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Section A
Basic ideas

1

How to approach a calculation

“The resistance R, is chosen so thatthe bulb i run under
the conditions for which it was designed, .. at a power
of 30W.

Caleulat
(3) the current that flows through the bulb under the
design conditions

In this chapter a question of the kind found in A-
level physics examination papers is answered. The

question concerns an electric circuit calculation
and, although the physics for such calculations is
not discussed until Chapter 20 s reached, you can
Iearn a lot from the question and its answer. The

understood by 3
byl mher p:np]e "The comments which falow the
repare you for answering all the

e ingeof e you can meet.

Example 1 -an A-level question

A 6OV, 30W light bulb is connected in srics with a
resistor and a batiery as n Fig. 1.1 The battery's EMF.

®) e
(€) the total resistance of the circuit
(d) the value of the resistance R,.

Answer

@ Powerp = x1
0x1

(b) Resistance
(© To
() Resistance R,

Reading the question

el esistance = 800

Don't be surprised if you have t0 read a question a
you discover

ilar question before.
“Do I recall one or more formulac likely to fit the
question?” “What have I got to work out?”

a until it maks



PHYSICS

‘The question in our worked example should make

you f a light bulb that would normally be
d 0 volts across it and would produce
30 jouls ofhest and ight enegyper second .

output s 3.0 watts, The formulac that

the bulb, ¥ the voltage across it, 1 the current
through it and R its resistance.

Diagrams

gy and s for two masses. R, was used for the
series resistance in our worked example (1). In
Example 3 of Chapter 4 abbreviations H and Hy
aee i for beo hoczoral fres, sy Vs
and ¥ for two vertical force:

some quantities many different
used. You will find d, ., r and othe letters used
for distances.
‘Whatever letiers you decide upon you must state
what they are being used for.

A diagram contains information that can be seen
at a glance and it can be easier to work from than
the lengthy wording of a question. If a diagram is
not provided with a question or asked for, a
Al sk way b worhie. Note it the
quest xample would have been
Complee without the dngram.

Diagrams can be very helpful
For diagrams you will need 10 be familiar with
some symbols such as those for the battery, light
bl and resstos thatar shown i Fi. 1. The
lines draw arrows on them o represent
foreesaveanother cxample.

Symbols for electric circuits are listed on page
319.

Symbols for quantities
and units

You will find in this and other physics books that
there is a well-established set of abbreviations for

most physics quantities. F for force and R for

current (‘Intensité de courant in X
symbols are often used; the symbol 7 (pronounced
lamba) for wavelength is an cxample.

upper case and lower case letters can
distinguish  between two similar  quantities,
e.g. masses M and m in the formula F = GM™
in which M could be the mass of the earth and
the mass of a sateltc pulled towards the carth
with a force F. Subscripts serve the same purpose,

State what y

You have much less choice with units. The
intermational agrecment known by the name of
“Systeme International (S1) fixes the units you
MUST use and the accepted abbrevi for
them. Examples are the amperc for current and
its abbreviation A, the metre (m) for measuring
distances (lengths) and kilogram (ke) for a mass.
A list of the SI units you will meet is given in
Table T on page 319. Note that the SI unit for
resistance measurements is the ohm and its
abbreviation is 12 (the Greek letter omega). We
have already had an example: for the
internal resistance of the battery.

Itis customary to write units in the singular. So we
2 3 ot rafer than § mete, Yon skl
adopt this practice in your calulations.

‘metres’ might be mistaken for
(interpreted as ‘metre second'). H

the plural is acceptable because it makes more
comfortable reading. For example 3 joules of
heat' was mentioned above. When abbreviations
are used 3 joule s written as 3 and we certainly
do not put an s after the J here. The J s Goule
second) applies to quite a different quantity.

Writ units n the ingular i all clcultions
3volt or 3V, not

Al the formulae you learn should work with SI
units and all formula used in this book work
with ST units.

Formulac work with S1 units

Maigle of St usit such s the iomet k2

times @ metre) and megawat (2 il

umus oo wath) may be ued when staing e i of

e quantiy. Submuliples of the S units such

e ‘milliampere. (2 thousandih of an ampere)

or a centimetre (one hundredth of a metre) may
be convenient for describing small quantities
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mlwnu—lmxnmn 1000 volt,
1V = 1000V
1 mitlampere - I-mpm/mm

Pl
000

Alist of the multiples and submultiples that you

can use is shown in Table I on page 319.

A symbol placed before a unit to mak

‘multiple or submultiple is a ‘prefix’ and it is

10 the front of the unit with no gap. A gap must

our example the diagram is already there o we

move on to choosing an cquation for part (a) of

the answer.

Equations you might think of that relate lhe

current (1) we want to caleulate to the vol

), pover (P) and resisianco (k) are R = I’/I
and you may know P

=FR
Consider relevant formulae

Note that we usually leave out multiplying signs

be used when a unit is made up of other units.  and write P of P
Thus a newton me is written as o confusion results, When values are insrted
between the m and s in ‘m & causes the Wnit 10 for 1 and 1 the  mudt be used, Otherwise 8
o o e T N0 ot ke 2402wl e 242 ntcnd
“millisccond’, the ‘m’ for milli being a prefix.
2ms means 2 millisccond, but 2
2 metre second

IF the vaoss you put oo » formula are
measurements in SI units the answer you will ge
n S1 it I the worked cxample the igures
gren (e dae) ae ol for measremens in
mely volts, watts and ohms.
s s acvisable 10 convert & vlue ghven
as a multiple or submultiple into a value in whole
Sl units, as explained in Chapter 3.
You may decide to do a caleulation using a
‘multiple or submultiple of a unit but you have to
be very sure of what you are doing and of what
units will apply o the answer you get for your
calculation. 1t s safer to work in whole ST units.

‘Whatever units are used you must show the units
in your working. For cvery item you work out
you must show the unit. So in our worked
example, at the end of the calculation for part (a)
of our answer we see the symbol A for ampere. It
can h:  vey cmbervome {9 et e vkt ¢
iy cvery e it s used So n part ()
ofthe alcnl:uumya see'= 24— 12~ § without
any 12 signs, but the unit is hown sith he o
resistance of 41
Show the unit with each quantity calculated

Getting an answer

‘When you have read the question, or even as you
are reading it, your aim should be to rewrite the
question’s information, perhaps first as a labelled
diagram and then as one or more cquations. In

R:gnrdm; the lurmnla R=V/I, you
it to get V= IR or I =V/R. This
Tamngng s cuted “transposition” and the rules

gkt wonder wtich of e formane o
current is e for our part (a) answer. The
one 10 chooke s 1 PV or P i
the current through the bulb, P is the power of
the bulb and Vis the voitage across the bulb.

Select an tppmyrlllz formula

‘The formula I = V'/R would be suitable if V' were
the voltage across the bulb and R its resistance,
but we don't know the value of this resistance.
‘There could be a temptation 1o put in
formula whatever resistance value i

namely the 8,092 internal resistan
battery and this would be quite wrong.

For any formula remember the conditions under
which i

So for part (a) we use P = VT or [ = P/V.
Rearranging the = V1 formua for P o get the
formula 1 = P/V i ver d quick o do.
ormulae needed in some questions can be m
tedious to transpose an,  thevalac that are 15
be put nto the cquation arc not too complicated,
it is best to start by entering the data in the
formu you rememter. Transposion i dlayed
the calculation has achicved some
Simplifcation. In our worked cample the

3
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equations are simple, as are the values 10 go into
them, so there s little to choose between
entering data first or rearranging equations first.

‘When an equation is complicated consider

Fig.12

entering
‘Write your answer as a series of equations. These.

follows that"is particularly useful. It was used in
part (a) of our answer. In place of several
cquations one cquation can often be continued
through a number of steps, as in part (b), where
we sce R =V/I=6.0/0.50 = 128 instead of

R=vit

Write a calculation as a series of equations

Using your calculator

It is assumed that you have an electronic
caleulator which has keys for sin, cos and tan (for
e wih sagle) sud fo Ao log of & nanbe
These keys and others on such a ‘scientific
caleulator are essential for Alevel physics
calculations. Some calculators conform o the
“VPAM' specifications and display not just the
last number you h; or an answer but
show alues and the operations (such as
adding and multiplying) that you have keyed

e answer is then displayed as well when you
press the equals key.

S0 to work out 6.00.50 in part (b) of the worked
example, you remember that 6.0/0.50 is the same
a5 6.0+ 0,50 and key in 6.0+0.50 = and the
calculator display is exactly as shown in Fig. 1.2
or is the same except that the 1200% answer is
replaced by 12. or by 12.0000 and the number of

zeros) may be different. The
differences are the result of the calculator having
2 number of diflersnt “modes; ie. ways of
working. The mode we want to use is
“scientific mode’ an is mode that gives he
display shown in Fig. 1.2.

Advice given in this book for calculator use will
apply 1o the Casio f-83WA calculator. The
procedures for switching on  this calculator,

a

selecting the ‘scientific mode’ and clearing the
screen for another calculation are described in
Chapter 2.

From the answer displayed as 1.200%' you get the
expected answer of 12 by multiplying the 1.200 by
10. If the two small figures were 02 you would

give 1200, When the small figures are 11, for
cxample, multiplying by 10 cleven times would be
convenient and this is one reason for keeping
the 1200 ard, s expeined [n Clister 2, we then
write 1.200 x 10 instead of 1

‘I'm stuck’

How often do you hear these despairing words
vhen  caleision qeaton s ld? Evea when

ledge of physics and the
Lpproprinic mathsyou cangetstuch.

You might then read the question again and ask
yourself:

o Does the question fit what | have been trying
todo?
o Is there a diagram I could draw?
+ He | pieured the stuation descrbed by the
question or have 1 ha mind a
withoutabattery or olhcr\ollug: supply?
Have I missed an equation that is needed?
Pethaps n < in the st provided with the
exam p:

.

« re there words in the question that I have

that ‘in series’ meant th
components formed a single loop.

Aword like ‘series’ can make a lot of difference to
acalelation, It . key word.Simiar key words

often met are ‘smooth’, ‘slowly’ and ‘steady’. In
mechanics quesions & “smooth
that is so smooth that it cannot provide any force
parallel toits surface. So a smooth floor can push
upwards and prevent a person falling but cannot
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provide a force to stop sliding. An object ‘raised
slowly’ means it rises so slowly that it has no
kinetic energy and gains only gravitational
potential encrgy. A ‘steady speed” means no
change in speed.

Ifat first you don't succeed .

Good luck

We all make silly mistakes sometimes, 50 never

et (oo disappointed. Rough checks are
mentioned in Chapter 2 and these will minimisc:
errors. Hurrying encourages errors, of course.
Leaving a question and returning to it can waste
time but may give you a fresh view of a problem
and lead 10 a successful answer. S0 take care and
‘good luck with your calculations!
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Essential mathematics

Expressions and
equations

An expression is a combination of numbers and
symbols Simple cramples ae he sum 3+ 2, the
difference 3 — 2 and the product

In any expression the order of mullyplmlmn or
adding is not important,

ep 3X2=3x2and247=7+2.

The order of subtraction DOES matter, e.g.3 -2
is not the same s

Alphabetical symbols are used to represent
numbers cither for conver because the
number is not yet knawn.

An equation shows that two expressions have
equal size or value, ..

A quantity is a number or a measurement. A
measurcment is a number times a unir, eg. 3
times a metre or 3 metre. (Note that units used
i calculations are written in the singular.)
Abbreviations are wsed for units, .g. m for metre.
The “Systéme International’ (SI) specifies the
symbols o be used for units. Units are discussed
in Chapter 3.
A formula is an equation which shows how a
quantity on the left may be calculated by
Insnin valves of quaniies o the right, e
area = length x width or A ~
Note that a x sign is u.(nally omitied if no
confusion will result, ¢.. 4 =

30 means 3xa.
Fractions

A half is obtained by sharing onc (cqually)
between two or dividing 1 by 2. For a half we

6

1+20r 12 0r ),

one,soitisnfracion,

- Half s part of & whole

3 divided by 6 also cquals a half, so that 3

“This illustrates that multiplying or dmdmg e
top (the numerator) AND the bottom (the
denominator) of a fraction b'y the same number

does not change its value, c.g.

A number mltiplying a fracton gt st
{he mumerator, and a number Ghiding o fracton
maliphc the denominsior, &

Note that 3 ration of & manber meas the
fraci 5" the number, ¢.g. ‘a quarter of 3°

of means ‘times’
To multiply a fract

numerators are m\llnphcd and the denominators
are multiplied, .

Simplifying an expression means to rewrite it with
‘smaller numbers or fewer numbers, e.g. ‘l‘ above

was simpliied o £ and also cquals 3.

Reducing two numbers in an cxpression, as inthe
3800 it shoe, s ald ‘w50t

is the removal of two numbers, as in

93x1
o

3%
which simplifies to which cquals 93

Cancelling in cquations is _discussed Tater.
Canceling unis ostures i Chapler 3.
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g may be useful when a fraction has
been divided by a fraction, e.g.

“he recprocal ofa racton s obtained by tuning
the faction upside dow eciprocal of 2/3is
372. The reciprocal of a slmplt number ¢.g. of 7
(which can be written as 7/1)is 177,

‘The reciprocal of 2/3 s 3/2 and of 7 is 1/7

Percentage

veans for cach’ and ‘cent’ denotes 100, 50 50
percent (written as 507) means 50 for each 100 o
500t of cach et 2 3 fraction 100 o =
half. So p% means a fration, 155 p% of y means

Py, anda fra P o tha
1y anda g so that

Using brackets

ax(b+e) or a(b+e) can be rewritien as
2b-+ac.S0 36 42 orcxanpl. e 3 times
the sum of 5+2. other

is the same as 5+ 4% which equals 4 + 2x. But
2*7
8+

X equals 8+ 2x.

When two bracketed expressions multiply the rule
is

@ Hble +d) =g+ ad bhe+bd 23

You can test this rule with simple numbers.

Working with + and —
signs

If muliplying bmckA:L( contain differences we
the effect of a — sign
¥ negaive mumber. The
tive numbers give 4 positive
product (7lm\=$7gw=~+|.  times + gives —,
and + times + gives +. (Note here that a number
wih o+ or - before it s rearded s +) So
cquaton 23 the cxpresion (3-2)(7-3)
Couldbe wrten as21 4+

A similar rule applies 1o sums and differences.
For example, the heat in joules required 10 warm
2 kilogram of water from jemperaure 7i" 10 10
84200010~ 73) and for 7, uals 4200, but
i e 4200010~ and

must give + to give a 19" temperature rise.

“The rules are
— —gives + —+or+—gives — ++ gives +
Your calculator

tion appled 10 bracketed cxpresion applcs
to evnyling widin the buckc(s S0 3642
(which i 3x2 0r

15+6.

atb+c) =ab +ac @2)
Numbers that are multplying are called factors
and in the expression ab + a factor of
both ab an ac. 1t is ommon’ i boh. Taking
outa common factor i the reverse of the process
described above. ab + ac becomes a(b +0)

Ina fraction such as S the dividing line shows

that 2 divides both the 8 and the 4x and the effect

For Adlevel physics calculations you need
lectroni cauator, ad it houldbe prtra
S0 that it will_handle, for example, the
powers, ogarthme, sinee and cosnes cxplined
later in this chapter. This book describes the usc
of the Casio fe83WA calculator. Other
calculators are similar.
Your fe-83WA is switched on by pressing the AC/
N Key.
‘The calculator has a number of different ways of
working, rent modes, and pressing the
MODE key (near top right of the kepad) three
times will show you the choice of mod
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Now use the MODE key again and press 1 when
“Comp’ is displayed to select that, then 1 when
“Deg’ is displayed to select degrees for angles
(discussed Tater), and finally 2 when ‘Sci’ is
displayed 1o get scientific mode

explained). In response to your sclecting scientific

obtained in the following calculation.

Novyocantet b aldsery rosingthe ACY
ON key to clear the screen, then entering
cxample 8 x 05 = . Your 8 0.5 t0be s
is shown on the screen and the answer is displayed
‘on the right as 4.000,a four-figure answer.

Now try 7 3= . Your answer is 2.100". You
expected 21 or 21007 Well, you are using
scientific mode, which will be very useful. Just
multiply the 2.100 by 10,

point one place 10 the rig
the 1 in the small 01 on the right i
now have 2100 (2100% " would
2100 % 10 x 10

indicate

Dividing, adding wd suhlracnng e ahieve
the same way but us —keys.

Some care is needed with dividing.

. 91 " 91
Consider 320 This is the same as 3%
DIVIDED by 47, e expsincd abore So the
caleulator entry should be 9.1 +

934
An example of another diffiulty is 35—,
where you could unintentionally get the answer
for 334 43,79, The simplest procedure is o use:

the Sallator for 211+ 379 t0 et 590, dear
the calculator, then use 9.34 +5.90 to get 1.583.
Alternatively, if you know how to use it, the
calculator's memory can help.

Brackets are handled by the calculator just as you
vould expect.For example, entering 62 +3) =
gives the answer 3.000° meaning 30.00 or

Simple rules for handling
equations

f the whole of one side of an equation is
‘multiplied, divided, added to or reduced by any

‘number, then the equation will remain true if the
same s done to the other side.

Examples are.

5 gives

from each side, ie.x = 3

o dx = Bgivesx = 2when cach side is divided by
4

o x42

x=5-2 by subtracting 2

= 4/6 can be written as 3r = 2 or

Calculate the time for which an electric heater must be
Fun o produce 7200 joules of heat if the potential
difference across the heater is 12 volts and the current
flowing is 2.5 amper

Answer

‘The formula usually learnt is “heat prody
joules = VI where  is the potental difference in
Yol 1 he et In smperesand the tne i
seconds.

juced in

700 = 12525 1
7200230 %1
Dividing both sides by 30 (or moving the 30 t0 the lef-

e where i i) e g 22
™

which

can be rewritten as

30
240 second or 4 minute

(The . symbol denotes the word ‘therefore’ or ‘it
ollows i)

Cancelling in an equation

Simplifying or removing a pair of numbers in an
equation is called cancelling. In the equation
3(26+ 3) = 3(x + ) the threes cancel when both
sidscl the cquaion e fvidd by . I gl
above had be —12x you
otk 12 awide moely o 72 you might
have divided both sides of the equation by 12 (it
would still be true). You would get 600 = 21 5o
thatt =

Simplifying 3.1v+5=44+5 to 3dr=44 is
also an example of cancelling.
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Solving an equation with
two unknowns

Solving means discovering the value of a quantity.

Supposcs rctangulr ock of el mesares
m by 3.0m by 1.0m and has a mass of 15000 kg

e density.

“The formula for density is

mass
h Tolume
that p = 1300

“This equation contains two unknown quantities,
namely p and ¥, and as it stands cannot give &
value for p. Further information is needed,
another equation.

We have the formula for ¥ which is V7 = length x
widh  dept

0% 3.0 % 10 = 6.0 cubic metre.
This value for ¥ can be substituted in the formula

= 2500 kilogram per cubic metre
An cqualion wht o unknowns s bccn solved

I doubling x halves y, or vice versa, we have
‘inverse proportionalify an o iy or
x 2 1. Consequently

ifxx Aoy
Ly then = orn

X1z
26

e term “ratio’ refers to a comparison of two
quantities and is usually expressed as a fraction,
eg the matio of a 3 metre length 1o (ic.
“compared with') a 2 metre length i 3 to 2, or 3:2
or 372. Two quantites that are proportional are

inconstat o, Fory = b th o k.

Exponents

* means a x a, a’ means a x a x a, ete., so that
i and 1000, etc. The small
superscript numbers are called exponents o
indices or powers. The number below an index is
the base and the base and exponent together can
be called a power.

‘When two numbers with exponents are multiplied
their exponents add. So 10° x 10° (= 10 x 10 x
10 %10 % 10) = 10",

v

Two s, say x and y, are pmporllunal i
doubling x coser s 10 double and wiplin
equation
constant (unaffected by the values of x and ).
Also of coursey x x.
Iy then x = k. 24

Ifx changes from.z, tox; causing o change from
310> then, ifx and y are proportional,

@8

so that 107/10° 10" or simply 10.
atxa Q@n
lat =a?e @8

10" = 1, e.8. 10710
clearly equals 1

1072 or 10" but

The reciprocal of a number with an exponent is
cbaind by putiog 8 —sign betore the cxponen;

plc. the reciprocal of 10° (= /10
= -3 = 10
and a
Another useful fact i
@y =a" a9

For example, (10°)° = 10°.
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A root of a number when multplied by itslf,
perhaps more than once, gives the number
concermed, eg.the fourth foot of 16 (written as
V16) s 2 because 2x2x2x 2 or 2 = 16, or
Vo

A second root i called a square root and a third
oot i called  cube root, The 2 atthe front of a
square root is usually omittd.

For example,
Vi=3and V8=2

When you consider that x" x x'

50 VR e e you an e the rule that
=

Similarly y& = x', e.g. V16
your calcolator (sce belowjwill tel you that this
equals 2,

6/ = 16"

Note that
Slab = fa x Vb @10

so that VA9 = V4

more usefully,

VEX 0=

% V9 =2x3 = 6and, even

The exponential function

“This is a number close 10 2718, which is always
denoied by and whichbasthe property a8
graph of y = &' has, at any point on it, a slope
Saual 1o the valu of y for that poin, This s
ilustrated in Fig. 2 1a.

bewriten s

y=exetory

where yy s the value of y when x = 0.

relatonhip applics.

This Jfor canple. 1o
radioactive decay in Chapter 2.

Exponential graphs are discussed in Chapter 30.

10

Fig. 21 Exponental graphs invoving

€ can be very useful as the base for logarithms, as
explained later in this chapter.

Powers of ten and
standard form

A large number like 1000000000 is more
conveniently written as 10, i.c. as a

farly 0.00001 (= 1/100000) = 10~
%107 and 70000 = 7 x 10°,

0007 =

Wibinga ounber wilh s power of 0 overeomes
difficulty. For example 70000 implies a numl»er
know to be exactly 70000, not even 70001
fow physis mossorcments wouid bo 2 preci,
‘There would be some experimental error so that
perhaps ol the 7and fs o seros e eliably
known. We can then write 7.00 x 10°. This
number is said to be in ‘standard form’ becay
is written with one digit only (the 7) in front of
the decimal point and shows the appropriate
number of digits after the decimal point as well
as the correct power of 10

In standard form write 3456 as 3456 x 10°

The scientific mode on your calculator gives

answers in standard form. An answer displayed

as 2100”", as mentioned earler, is of course

using the small figures to s ¥ of 10

and should be read as 2.100 x 10", Similarly
12347 means 1234 x 10°,

Logarithms

If 10° = x then L is called the logarithm of x or,
‘more exactly, the logarithm o the base 10 of .
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For example 10° = 1000 so that log (1o the base
10) of 1000 is
We write logy, 1000= 3.

Ifthe base is not specified then we assume it o be.
10, 50 that log 2 s taken to mean logo 2.
‘The exponential function e s quite often used as
the base for logarithms and log, is described as
the satural logarthe and s g by . So
foge 7.388 or In7.388 s 2 because ¢
Sine 5 09 and €210 we have

= (€)% = ¢4, which means that

Inx =2 3logx (a very useful rule) (211

Other useful rules for handling logarithms are

logab=loga+ logh (242
2 loga—
103 = loga — log
and loga* =bloga 21

so01log (1000 x 100) kvg|000+ log 100

and log 100° 6

Jxlnglm'fix

Powers and logs on your
calculator

“To obiain the square root of a number on your fe-
DA cdeltor you e the V- ey, Enteing
ACV 4 ces the answer 2. If you had an
s of 4 llyed aher sme cletion o prs
=) you could then pressthe v/ ey and get 2.
Foror 5 enter the 5 first, press the
then use x* or x'.
The X' key allows a number like 2.1° 1o be
caleulated using the keys 2.1 %0 5 =, which gives
40847 or 4084,
A most important key s the one marked EXP. lts
effectis " 10t0the power of’so that 4 EXP 2
gives an answer of 4 x 10° or 400, and 40007
displayed.

ey and

Experimental errors

When a length is measured with a metre rule the
reading is taken of the nearest marking above or

el the k. This eans that 3 mesareoent
say 23.3 centimetre may be oo high o too

hy o amount (0. 0.5 com)comesponding o el

the spacing of the markings. So the possible crror

s+ or ~0.05cm and we record the measurement

25233 £0.05em.

We can ao expres the possle cror s 3
perenoge o the messicment. The 05 .
of 233 is 995 100% or 02146% but 02 is

near :nmlgh Tor indicating crror, so we have
233402

The possible error in a measurement may also be
indicated by simply limiting the number of digits
used for the recorded value. 53.3 wil be regarded
as having a + possible error that would take the
right hand 3 digit halfway up towards 4 or down
towards 2. This s the same as =005 in our
example.

The 833 is desribed as comprsing thtce
“significant figures, the 5, 3 and 3.

Oin front of $3.3 would serve no purpose, the 0 at
the front of 04 serves to emphasize the presence of
the decimal point and the 00 in the number 0004

figures that are NOT sig
ree significant figures, 0.004 530 has four.

When it was recommended that you set
caleltor o scienifc mode (Sc)and follow s
by keying in a number 4 you were choosing
answrs to b limied to four significant fgares
(sig figs).
In your calculations you must not give an answer
that suggests a very inappropriate accuracy. For a
simple rule never give an answer to an accuracy
better than that of the feast e iy used
in the calculation, ic. no more sig figs than the
Ieat ceurte valoe wsd i the cicution. Th
usually means that you will shorten your final
iswers o two sig figs. During your calculation
shorten any longer umbers to four sig figs and
limit your calculator to four sg fig answers.

Note that n punber ke 2371 & ssucedto v
sig figs as 2.4 rather than 2. se 24 is
et o the 2371 We hae rounded s up. Fora
number like 3.65, which is half way between 3.6
and 3.7, the practice is to round up, i. write 3.7
for the two sig fig value,




Calculus notation

in time 7, can be
elta ) and, in the
caleulus, a very
small increase in tis denoted by o (akso delta ).

An increase in 4 quantity

‘The change &, may be associatcd with a change in

will necessarily be

smallness of &1, 5 divided by b, i.c. &V, then
tells us the velocity (the rate of change of
displacement).

will o course be infinitely small too but de/st will
tell us the velocity at exactly time r. The value of
/st when 3¢ is infinitely small (approaching
zer0) is written as ax/ét 5t — 0 or more bricfly as
du/de (‘dee.xby dee ),

‘or most purposes a physics student need not
(but should) distinguish between d/at and d/dr.
So dv/d denotes rate of change of x with change
of 1. If it so happens that dxidr = constant (a
velocity for example might be constant) then
dvjde = any distance/time taken,

(Tospe P!
average value 2t around the time 1 we nced to
ave g for a time ot with ot infinitely small. dc

N
-

Atomae angeswe o)

w e s
. entarior s - s o opposts s arges)
Fig.22 Usetulinformation concorning angles

12

Some rules of y

may be measured either in degrees (one
revolution is 360 degrees (360°)) or in radians
(rad), whose size is such that 2x rad equals one
revolution. Some useful facts about angles are
shown in Fig. 2.

Pythagoras’ theorem

In a right-angled triangle (Fig. 2.3) the longest
side (the hypotenuse) has a length ¢ related to
the lengths a and b by

a4 214
sem/" laem > °
Tom 7

Fig.23  ightangled vangles
Well-known examples of right-angled triangles
are the 3, 4, 5 and S, 12, 13 triangles shown in
Fig23

Isosceles and equilateral triangles

The isosceles triangle has two sides of equal
length and so two of the angles are equal
(Fig 24a).



EssenTIAL

An equilateral triangle has three sides of equal
length and cach angle cquals 60° (Fig. 2.4b).

(@) Isosceles triangle (o) Equiateral tiangle

b AN

e
Fig. 24 Isosceles and equiateal riangles

Some properties of circles,
and spheres

The circumference of a cicle is 2o (where £is its
radius) or 7 times the diameter. The value of 7 is
3142 or 2277, A dis’s area is 7. For spheres
volume = d4rr’/3 and surface area = 4z

cs.

As shown in Fig. 25a, an angle of 1 radian
subtends, at any radius 7, an arc equal to a
fraction 127 of the circumference, . it
subtends an arc of length .

(@) Arc=radiusfor  (b) Angle = arciradius.
1radian

A

Fig.25 Using radians

‘The size of any angle in radians equals the arc it
subtends divided by the radius (Fig. 2.5b).

arc
=20 @15

Trigonometrical ratios

Thesize of any angle can be specified by imagining
it 1o be part of a right-angled triangle and then
describing the resulting shape of the triangle as
shown in Fig. 2.6. For example when 0= 60", the
ratio of the adjacent side t0 the hypotenuse is 1. So
bic, which we call cosine 0, s 0.5.

Longestsde s hypotenuse A Langth o sice opposta o

7
Langth o scacentside
Fig.26 Trigonometrical ratios

‘The most useful ratios are

sined (orsin®) =alc  (216)
cosine (orcos () =blc  (2.17)
tangent0 (ortan () =alb (218

For a given 0 (in degrees or radians) we can get
sinf, ~cosf, using  suitable ~ electronic
calculators or tables and similarly can deducc 0
from any given trigonometrical ratio.

Small angles

For a small angle (0 about 5° or less),
tan@ % sin = 0 in radians and cos @ 1, o better
than 1% (‘=" denotes ‘approximately equals’.)

Large angles

For 0=90°, sin0 = 1, cosf) .
For 0> 90, we can still use sin, o, etc. if w
apply suitable rules as ilustrated in Fig.

Fig.27 Trigonometricalratios for large angles.
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“This shows that a negative sign must be given (o

an opposite side that is below the horizontal
and to an adscent side i i i t the e, e
tan210 58 (same a5 tan30). The

selationship etween sin0 and 0 s shown as &
27h,

Trig ratios on your
calculator

Quadratic

An equation having the form AX + B¢+ C = 0s
caleda qudiatic quation,he 1 0 C being
Sced nanbers. Examples 36 +9r+5 = 0,0
It B 4

iy

Any qumm.c cquation can be sobved for the
unknown using the formula

B+ JBT=4iC
2 @2
Your ft-83WA calculator has keys for sin, cos and
tan. These are used in the way described earlier 450 we get

for the V' key.

“The SHIFT key (top lef of the keypad) allows you
10 obtain a function indicated above the key. The
sin key has sin * marked above it and so itis this
key 10 use when, for example, you want to find the

s an extension of the rule (or theorem)

of Pythagoras and applics 1o a triangle of any
shape. It relates the lengths a, b and c of the
triangle’s sides (see Fig. 2.8).

ci=at 4 b = dabeosi)

Fig.28  The cosine rule

Fig.29 Thesinorule
The sine rule
‘This rule states that

b e
Sink = sinC

so that_for
94 VO ax3%5

which simplifies to

~ 1507638,

3

9431
V2o

So there are two possible answers, namely

~15+0.7638 and 1.5 ~ 0.7638, i.e = ~0.7362
and ~22638.

In the case of * — 4 = 0, which means & = 4, the
al

formula is not needed..x = 2 or ~2.
Note that multiplying brackets in the way
cxpined carlr, f ppled 1o an cpresion lke
e+ 2)(x+3) will give © +5c 46,

quadratic equation

An important relationship is

tax—a)=x-a*

@22)

Rough checks

Itis easy to make a mistake in a calculation, by
presiog the wrong key on a_caleulatorfor
If you wanted 10 add 3.132 to 0.8401
it a:vldemall) pressed the -+ key instead of the
key you would get 3.728. But you can sec at
glance that the answer should be more than 39.
If you have & rough idea of the answer you
expect you can eliminate mistakes.

For the jon =398 v,
For the expression 3395 c you would
expect an_answer not much different from
3
o

u 1841 you believe it. If it gives you 3.930
made @ mistake (you've used a x sign

you've
instead of a second
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Units and dimensions

Measuring a quantity

When a length is measured as 7 feet it means 7
times the length of a foot. What is measured (i
the quaniity) consiss of a number (7) multiplied
by the chosen unit (foot, metre, etc.).

Fundamental and derived
quantities

Several quantities,like mass, length, time, temper-
n

il others are deried rom thes. One cample
of a derived quantity s a velocity which is a
length divided by a time.

Sl units

‘The SL system was mentioned in Chapter 1.

i jsiom] s e e i inclcig e
kilogram (kg). metre (m), and second (s),
other S uni re e from thec:
per second for velocity.

Dimensions

Regardless of the units employed a velocity is
always a length divided by a time and a force is

shvays 2 mess mlplied by  engh nd divided
by time squared as seen from F = ma (Equation
55, Cuspter 5) 05 F " r (Equation $4

= mass x Iel\g(h/mne or,
ass x length  time >

The mulnplying quantities (mass, length and time

here) are the ‘dimensions’ o the derived quantity

(force in the example used here). So the
dimensions of a quanity are the base quantities
from which it is made up in the same way that
the dimensions of a box would be length, width
and depth of the box.
Square_brackets are used to_indicate “the
dimensions of’ and the symbols M, L and T are
used to denote mass, length and time when we
are dealing with dimensions. Thus the dimensions
ofa force are M, L and 7 and we can write
[Fl=MLT?
(An identity sign = may be used in place of the
equals sign here because the equality i true under
all circumstances, not just for particular values of
the quantities concerned.)

i bciog of e (ML T - then
= =
Some quantities arc_dimensionless, ic. their
dimensions are zero. They are simply numbers,
ptr)uyK ratios of il quanies. An angle s an
nele in radians equalling an arc
iy Ty i . length divided by  length
giving L7). The symbols Q. 7, 0 may be used for the
dimensions of charge, current and temperature.

Important properties of
dimensions

“Three pints plus two pints equals five pints’ is
always true but ‘three pints plus two kilograms
quals ...”is meaningless in an equation since all
S e 2 e et i s
dimensions, st be the same kind of
Quantiy Thi fuct can be wefol for checking
equations.
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‘The dimensions of a unit must be the same as
those of the quantity to which it applies. So in
place of

(7

we can write

MLT?

[newton] = [kilogram] [metre] [second]

and kgms™ is a suitable unit for any force.

(In fact the definition of the newton means that
one newton corresponds to ONE kilogram and
ms . S0 1N = lkgms’

Example 1

What e the dincnsions of () forcs, () momen,
(©) work, (d) press

Method

We need to relate each of these quanities o quantities
whose dimensions arc known.

@ Force = Mass x Acceleration

o MLT

= Force x Perpendicular distance

() Moment
Moment = MLT™ <L or ML'T"
(&) [Work] = [Force x Distance] = MLT x L
or MLT
or  MLT
) MLT?
(&) MLITE

Example 2

‘Which one of the following has different dimensions
from the others?

A stress x strain B stressstrain

€ pressure D potential energy per unit volume
E torque [0&Co

Method

Answer A mentions stress which i defined as force per
nit area while strain has 1o dimensions because it i the.
rato ofncreas i length o ociginal lngth. o A has the
dimensions of stress (F/ or ML /L or ML™ T,
Answer B clearl has the same dimensions 5o we arc
looking for an answer whose dimensions are not
MLOT

Ansr Clsaloa fre Ghided by n areab ety
of pr

Now for D we look for a defintion or formula
concerning poteatalenergy.

TE <ot or P vorkdone

 may b useful

mgh s dimensions M(LT )L and, more_casy
weight x height has dimensions (MLT *)L. Diiding
cither expression by volume (L) we get ML™/7-2.

So for D the dimensions are also ML™'T and the
different ansver must be E (where torque
distance sce Chaper 33, page 274, and has
(MLT-)L or LT confirming our answer).

i

= weight x

Answer
E

Example 3

i of the following units could be used for
capacitance?

A kgm"" B
igimc b

E k;‘

Method

Some relationships that might be useful are
capacitance C = Q/V

and LV

Chapier 22.

Neither of these formulae gives an immediate answer

ecause the volt for ¥ does not appear in the answers
suggested.

work done (or energy stored): sce

work done.
harge moved

. _ foree x distance

Now - foree i

anda suitable unt for  (using C for coulormb now) is
(kgm{z\m o kgmisic

For apaclnme we gt ChgmsiC! o

Clgimis
Answer
».

Checking equations and
units

All terms in an equation must have the same
dimensions, ie. it is homogeneous. This can be



useful for checking the correctness of an
equation. For example the lens equation
Lot

I
(sec Capter 15) might, by mistake, be writien as

u I
The mistake is obvious if dimensions are
considered because v/ and | are dimensionless
but 1/f has the dimension L
As regards checking units, an example of a unit
hich s it o e i el orthrmal
conductivity, k; see Chapter 17. We need
cqudum\ Contining k Now i gen by
ae -
Ar = K@= 0/l
whence k = FI/A (6 ~ 6;) and the units are

W xm/(m? x K)or Wm 'K

Heat flow (F)

Exercise 3.1

What are the dimensions o
0 demy. ) e o i e per minute,
) power

Whilm:!hz dimensions of:
(3) distance; {b) force x time, (c) angle
moved through per second?

Wttt he dimesionsof mgnei o e
(Chapter 24 giv = Bl PD = d®/d:
it Crer S0 g P = W01
4 The cquation relating cument I through s
semiconductor diode to the applied potential
difference 1 at temperature T
1= LT
where ¢ in the Vs the electron charge and k is the
tant. What are the dimeasions o K2
“The surface tension of aliguid is measured in N~
‘What are the dimensions of surface tension?

“«

Exercise 3.2

1 Evaluate in the equation E = Cm'v’,
where E s Kinetic cnergy, m is mass, v is velocity
and C is a dimensionless constant.

2 The force of atiraction F between two particles of
masct iy g m st o ditanee d apar i
Show that the

by ma/d
mensiomof G are s HoT

3 The minimum velociy needed for a body ©
given by v = V(2GM/R)

where M is the mass of the carth and R s its
radius. Show that the equation is dimensionally
correct. The dimensions of G are M~'L'T .

Conversion of units

Students usually remember conversion factors,
1000 for changing metres to millimetres; but
it is not always obvious whether to divide or
maltly by a ocor, Common sese should be
used. *Am 1 changing to smaller units? Will T
therefore gcl more of thom? | mers changed to
smaller millimetre units will be
N densy o 1gem-— (15 per em' of subslnnr:i
will give many more (100° times more) when
volume is 1m’, ie. 1gem * is equivalent to
10°gm. Changing to 4 Ihc answer. will
become smaller by 1000 i

Exercise 3.3

1 Comert o
(a) 30kmh ' toms (b) 001w’ to mm

(©) 3000m 10 jan 20000 min' 105"

2 The conductance o of a conductor is 0010,
Convert this to m0™".

Equations where

conversion factors cancel

Consider the Boyle's law equation

i

where p, and ¥, are initil pressurre and volume of

then the pressure is chang
(i 2bar). Weare asked o calculate V.

Al our_equations work with S units. Now
1 bar = 10° Sl units of pressure (Nm * or Pa).

10X 10° % 3.0 =20 % 10° < ¥
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But the m on each side cancels, s0 that we get

", whether p, and p, are in Pa o bar.
AT tha s nccesary her is tht , 4nd p hiwe
the same units.

A useful example of conversion factors cancelling
is in Chapter 28, Example 1.

An unusual unit—the mole

concerned, e.g. 1 mole of **U atoms has a mass.
dose to 235 grams. (Note the unfortunate
emphasis on grams not kilograms!)

1 mole has a mass of A grams

e mass per mole (the molar mass) =
per mole g -

Weight

Agram

Avogadro’s number (N, ) is the number of normal
carb(u\ aloms ("c atoms) that together have a
of 12 grams. (This s very close to ¢
mumber of normil hydrogen stome (1) having
mass of 1 gra
“The mole is one of the base units of the 1 system.
Itis an amount of substance defined not by any
property of the substance but by the number of
articles it contains. This number cquals
Avogadro's number.

1 mole contains Avogadro's number of particles.

The particles must be named, e.g. atoms of
oxygen or molecules of oxygen.

The unified atomic mass
unit

“This unit of mass s denoted by the symbol ‘u’ and
is used for the masses of very small particles such
as atoms. lu is one twelfth of the mass of a
normal carbon atom and s very close to the mass.
of a normal hydrogen atom.

Sol atoms) has

“Weight'is a force and the term should be used to
describe the force on a body caused by gravity. A
body's weight is related o its mass (m) by the
formula ¥ — mg where ¢ i the acceleration due
to gravity (gravitational field strength) of the
Earth. The units for , m and g will normally be
newton, kilogram and ms? (sce Equation 5.5)
and be taken as 10ms ? (see ‘Motion
under gravity’ in Chapier 5).

The term kilogram force’ can be used for the
weight of a 1 kg mass but kg force” is not an ST unit.

Exercise 3.4:
Examination questions

(@) St what s meant by ‘an equaion s
mogencous with respect

© Show tat tbe cqwation x~ut+af &
Uomogencous WAl spect &

() Explain why an cquation may be h
gencous with respect 10 its units but stll be.
incorrect [Edexcel 2000]

2 When a body is moving through a resisting medium
such as i it experiences a drag force D which

mass of N x 12u, but N of these atoms have a
mass of 12 grams, so Ny x 12u =12 gram,
‘meaning that

gram

For | mole of substance whose particles cach have
a mass of A atomic mass nits the mass equals
1

N % A atomic mass units which is Ny x A x

‘geams or simply A grams.

For most purposes A may be taken as equal to the
mass number (see Chapter 28) of the particles

D=iCpa

s the density of the resisting medium, A
is the effective cross-sectional area

. that area perpendicular to its velocity v. C is
called the drag coeffcient.

Show that C has no dimensions

[WJEC 2000, part)

3 Coulombs law for the foroe F berween two

charges g, and g, separated by a distance , may
writien as

F b

where k is a constant.



UNITS AND DIMENSIONS

(a) For the case when force, charge and distance (i) The value of ¢ is 55 x 102 Fn".
e cxpesed in e S1 unis newion N, Hence obtain the numerical value and
m respectively, deduce unit (in terms of farad F and metre m)
st for ki terms o N, C . ofk 1CCEA 200]

(®) () Write down an equation expressi
relationship between the constant & and
the permitivity of free space ro.



Section B
Mechanics

4
Statics

Representation of a force ~ Example!

A force is a vector quantity ~ that
‘magnitude and direction. We can thus represent
a force by a line in the appropriate direction and
of length proportional to the magnitude of the
force (sec Fig. 4.1).

Sculc tomm 1N e~

Fig. 43 Information for Example 1

Fig. 4.3 shows two forces acting at a point O. Find the
magnitude and direction of the resultant force.

Method

Addition of forces

Vector quantities such as forces are added using
the parallelogram rule (see Fig. 42) ~ the
resultant is the appropriate diagonal of the
parallelogram

@ Scso g

Fig.42  Addition of vectors (0. forces) Fig.44  Solutionto Example 1

20



stancs

1810 Fig. 4.4

angle 8 by scale drawing and this s often sufficint,

There are also two ways of accurately calculating the

values required:

(i) by use of the sine and cosine rule (see Chapter 2)
as outlined below

(ii) by calculating the components at right angles of
forces A and B and combining these components
using Pythagoras _(seeResol roes
section, see page 22).

Rerenml 10 Fig, 4.4b (see Chapter 2) we see that
= b4 - dbccosd

Wehavea = R,b=80,c = 50andA = 60" S0
R =845 2085 xcos60 =49

70N

To find 6, we know (see Chapter 2)

F
70,4 =60',c = 50and

Sk

Wehavea

60~ sind
0=382
Answer

The resultant is of magnitude 7.0N at an angle of 3 to
the 8ON force, as shown in Fig. 4.4

Example 2

Fig. 45 Information for Examplo 2

RefetoFig 45, Twoorcsof magaitude 00N 1d P
newtons produce a resultant of magnitu

oo A i o g amd decion ot -
Method

Fig.46 Soluton to Example2

=107 4 30° = 1000
[

Ao

w03

o oe

Answer

F s of magnitude 3L6N at an angle of 184" to the
resultant force as shown,

Exercise 4.1

on on
fas

T e
@ ®
Fig.47  nformation for Question 1
Find the reslant ofthe foross in (o) Fig. 47,
(b) Fig-
e ot o .5 0, cont = — con(180 0.

1

~

Fig. 48 Information for Question 2
Refer to Fig. 45, Forces of 600N and F newtons
2ot u point O. Find the magsivods, and

F il the resultant force is of
ade 00N Hone

Fg.49

Information for Question 3
Refer to Fig. 49 and repeat Question 2.
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of forces

In diagram (a) we can see:

A single force can be formed by combining two
(or more) forces 5o it follows that a single force
can b replaced by, or resolved
components. This is usually done t right angles
(see Fig 10) bocause th separate conponents
¥ and H have no effect on each other ~ ic. ’ has
10 effect in the direction of H.

Fig.4.10 Components of aforce

Example 3

Towocoplanar forces A and B ac at a point O, s shown
i Fg 11 Cakle e componeat o e st
(® along OX

(6) slong OY

Use your answers for OX and OY to calcuate

(©) the magnitude and dircction of the resultant force
due 1o the addition of forces A and B.

Fig. 4.1 information for Example 3
Method

Refer to Figs 412 and compare with Fig. 4.10.

1 Componeres ol A
Fig.412 Solution to Example

©) Componeets ot 8

2

Vi = Ssine0
Horizontal m...,..mm ot A long OX,
Hy = 500560" = 230N,
In disgram (b) we can see:
Vel componestof B along OY,
V=
oo mmpnntm .,r 5 tong OX.
Hy = ~10c0s35" =
Note the minus sign, since Hy s in the opposite
direction 10 OX.
The total component forces along OX and OY can be.
found by adding the scparate components along OX
and OY. Therefore

Resultant component along OX = Hj +
45N

Resultant component slong OY = ¥ + Vy
14N

For part (c) we combine OX and O as shown in
Fig4.13,

Tnsrle %
Fig.4.13 _ Information for part ()

The magaitade of the resulant R is found using
Pythagoras:

R =0X +0Y =457 + 114
1508

I3
Alotand
L0

147457 =249

Answer
@ —46N
® 1IN
(© 12N at an angle of 68" as shown.

Note that (s) i negatve sice the resultant component

(Hx + Ha) i in the oppositc direction 10 0

Equilibrium of a body

When fores st  body the it wil be in
equilibrium provided that:



stancs

4.) 00 net forces act on the body ant
(i) o net turning effect exists (mm s the sum of
kwisc  moments and  antic
moments cancel out ~ sec Principle of
Moments p. 29,

Example 4
Sugpan

Fig.414  Information for Examplo 4

Amass o200k s rom the midpoine Pof a i,
414, Caleulat 3

Method

Weighg < 152 10= 15K
(0 Forcs stingonthebody (5) Componcas i cightng

Fg.416 Solutionto Example’5

The body exerts a downward force mg on the plane, as
shown i P, 16,5 he plne st et a cql
and opposite (upwards) force if the body is
atrest, It is convenient (0 resolve mg into @ component
, perpendicular to a a4,

,\\wmex s
Method

Fig.4.15 Solution to Examplo 4

Fig. 415 shows the forces acting at the point P. The
vertical component of tension 7 is TcosT0° in e
case, so for equilibrium in a vertical direction
2Meos 70" =200
=208
Note i e borsoaal component of teen &
Sin70' in each case, but these forces are in opposite

el cach other. This ensures
equilibrium in the horizontal direction.

Answer

202N,

Example 5

body of mass 1:5ke is placed on a plane surfuce
incined at 30 1o the horizontl. Cakulte the triction
and normai raction forces which the plane must cxert
ifthe body is o rmin o res, Assme g ~ 10ms *.

shown i Fig. 4.160. Now
P = mgeos30 = 15 x 0866 = 13N
A=mgsin30 =15 % 0500 = 75N

So, a5 shown in Fig. 416, the plane must provide
75N When R

vectorially, they provide a vertically upwards force
equaltom.

Answer
75N, 13N,

Exercise 4.2

(Assumeg = 10ms™)

son

Fig. 417 information for Question 1

‘Three forees are applied to the point O as shown
in Fig. 4.17. Calculate

(@) the component in directions OX and OY
respectively

(b) the resultant force acting at O.
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2 Refer (0 Fig, 418 and calculte (a) the tensi
the sting, () the value of .

Fig.4.18
A body of mass 30kg is placed on a smooth (i
ricionless) pane inclined at 20° to the horizontal.
Aforce of (@) SN, (b) 20N i applid to the boxly
‘paralc 1o the line of greatest slope of the plane

in & dicion p the plane. il h
force acting on the body in

Information for Question 2

M

Turning effect of forces

Aforee can produce  wrning ffec o moment,

2+ Py

Note also that,in equilibrium, the net force on the
body must be zero. Thus, upwards reaction force
Rat pivot point P is given by:
R=F+F+F

Example 6
A binged mpdooe ol mas 5kg and lngth 10m 10

e opencd by appling a foce £ atan ange of 45" 5
shown in Fig. 4.0, Calculate:
(@) the value of F and
(b) the horizontal force on the hinge.

Asumeg = 10ms~*
£

iy o F1.420  nformationfor Examplo &
Seclockwge ucuig cfet Method
Moment of a force (Nm) = Vorenss
Force (N) stance (m) 1am
of line of action of the force osm
from the pivot
Referring 10 Fig. 419, force Fy produces a
clckwis morment iy dhout pvt P and fores
F3 and F; produce antilockwise moments Fd; g s
nd oy il sbowt Fig.421 Soktionto Bramples

IS -

Fig. 419 Turming efectofforces about pivot P

“The Principle of Moments states that for a body to

be in equilibrium then:
i = sum of anticlock-

Fig. 421 is a simplificd disgram showing the forces

acking i which F asbocn resoved oo s hoizocal

(H) and vertical (V) components. Weight of trapdoor

mg = 150N,

() At cquiibrium, taking moments sbout hinge
ivot) P

®

wise moments.

So, referring to Fig. 4.19, in cquilibrium (ic. no
nin

)

H = Feosd5 = 106 x 0707 = 50N,
Answer
() O.11KN, () 75N,
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Example 7

“This exampie s sbout body mechanics.

Fig. 422 shows the forcarm extended h

holding an object of mass M =
pivons about the el joio  and the mss of he

forcarm m = 1.4kg

018m fom the chow jint. The forearm and objee

are supported by an upwards force T provided by the

biceps muscle and which acts 60mm from the joint.

Caleulte:

(@) the magnitude of T

(B the force acting at the efbow (pivor) oint J.

10ms

Assumeg =

Forsam
Py
Fig. 422 Information for Example 7
Method
o00m —»!

mouN Mge2N

Fig.423 Solution to Example 7
Fig. 423 is a schematic diagram showing the forces

acting on the forearm. Force F acts at the elbow joint J
(pivor). For the forcarm, mg = 14N and for the object
Mg = 20N,

() At equiibrium, taking moments about the elbow
joint (pivot)
clockwise moments = anticlockwise moments.
(14 0.18) + (20 036) = T x 006
= 162N

Note that the force F* has no moment about the
joint J since is line of action passes through J.
(b) In equilibrium:
total upwards foree = total downwards foree
162 F 414420

F=128N
“This (downwards) force F s effectively provided

through the long bone connecting the elbow joint
and the shoulder.

Answer

(@) OI6KN  (b) 0.3kN.

Stability and toppling

‘When a body isin contact with a surface it will be
in stable equilibrium provided that the vertical
line passing through its centre of gravity lies
within the base of contact with the surface.

Example 8
1 o Heck of beih Sm amd o e s
section 40cm x 40cm s rough plane
Saiace s shown in Fig. 424 and the incinaton of the
plane s gradually increased. Calcuate the angle of
icinan of th plare st Wb e Hock rpls
over. You ssumethat friction. forces are
ifiint 10 prevent the lock from siing down the
ane.

X iscotro ot gravey

g
Information for Example 8

Fig.424
Method

e that one edse of the block is perpendicular
o't e of nclaton o e plan. Suppone the
planc s gradually tited (anticlockwise) so_ that

vcutualy the block il apple sbout » T through
the poir



cac prysics
Xncomsctgmy Exercise 4.3
1 oo
czom S0 pehe
* I
™ P
[ S———
o-omm  w-rom

€1 Bock avou o e
Fig.425 (a). (&) and (c) Soluion fo Example 8

In Fig. 425a the weight mg of the block produces a
s moment about point A which tends 0 keep
the blockin contact with the plan. The block is in
i e e cockw momer s bl by
‘moment caused by th reaction forces
lnml mc plane.

In Fi 425 the weigh of th tik producs o
‘moment about point A s the
ok o ol e The bk . o i

since  net tuningeffect atson it
In Fig 425

Fig. 426 Information for Question 1

Fi 426 shows a man acmpting o 3 pices of
machinery of weight W = LOKN using a uniform
ir0 bar of weght 5 = ZﬂkN He uses a pivot P
placed as.

(a) the magnitude of the force F which he must
‘downwards if he is to lif the machinery

(b) the reaction force provided by the pivot.
2 InFig. 427 an object M of mass 20kg is supported
by a hinged weightless rod and siring as shown.
Caleulate
(a) the tension T in the string and
(b) the horizontal force acting o the hinge.
I the i, tnson which the sting can
ithstand is 500

(©) the maximum additional mass which m
i 0 s M i 10t g reakig.

Asume g = 10ms .

 uch tha he vl ine pasing rough s cnte
of gravity passes through point A. The block is fust) in
Cauibrium b for ange of 1 geater than  the
block will topple.

tan = 2025 = 080
6=%T

R

Fig.427

Information for Question 2

3 Fig. 428 shows the am horizontally
unsupporing an obec of mas M = G0Kg a1 4
dstanc 080m fom the shouder fint 1. The
deltoid muscle, which acts in tension, pre



stancs

necessary force 7 at_an angle of 20° 1o the

horizontal and at 0.15m from J, us shown in
Fig 4280,

Oarod msce

(0 A supporing mass

oeong

Fig.4.28 _ information for Question 3
The arm is of mass m = 4.0kg acting at a distance
£ 0.35m from the shoulder joint. Caleulae:

(8) the magnitude of the force T provided by the
deltoid muscle

(b) the magnitud
e oo e and
(i) the vertical force:

acting at the shoulder joint.

Assume g = 10m

A roading lamp has 3 round b of daeter
e of gravty is 120¢m above

Tig 420, Calelt he ange
ase may be tilied before it
mppll.\ i o F_mm e 8)

o e o i

Exercise 4.4:
Examination questions

(Assumeg = 10ms™)
1

weo0n
Fig.430 Diagram for Question 1

A weight of 100N and a system of pulleys is used
1o apply 3 force
Fig 4.

m.m}n by changing the angle )
of the traction force applicd o the leg f

i ety the masioum vl of the
rcton ore wing W

Fig 431 illustrates a crane.

(T

Fig.431

For the purposes of his question, assume that the
jib AC has negligible weight. AB

makes n nge of 3" il te b ik
horizont a load of 200N,

ot i cquitum

a cable which
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(i) Calculate the tension in the cable AB.
(i) Caleulate the compression force n the jib AC.
[CCEA 2001, part]

M

A sie unfortunately breaks o bone n the fouer

an of the leg whit atiempting  jup. Whi
 appid 1o -

e leg

e s wouid il th rr o

togeher o ighly 1t he e, when nma

er than it was before the inj

r;uu uz hows cne arrngementfor pmams

the tractic y system is in cquiibrium

in the poition shova,

Two campers have 1o carry a heavy container of
‘waler between them. One way to make this easier
s 10 pass a pole through the handle as shown.

Q C

(3) The container weighs 400N and the weight of
the pole may be neglected. What force must
cach person apply?

Fig.432

(@) State_fully the condit
satisfied for a system 10 be in translational
ilibrium,

(b) In Fig. 432all the pulley ar frictonless so that
in the rop i

() Determine the magnitude of the total
horizontal force exerted on the leg.

i) Demmlne the magnude of e il
exerted on the leg

(i) w.m bricfly why the force calculated
() does ot move he utienttowards
e bt ofhe e " TAEB 199
4 The rectangular ubzeﬂ-&&l,cnndumcxh
2cm long and 1cm high, Which one of the bois
s in cquilibrium?
N

@
£
|
1 i
¢ M o
[AQA 2000]

0 hold
rope tied to the handic as shown below.

(b) Draw a frec-body force diagram for the
container when held by the ropes.

(€) The weight of the container is 400N and the

two ropes arc at 40" to the horizontal. Show.

hat the fore exch rope applis o the
container is about 300N.

(@ Suggest two why the first method of
carrying the container is easier.

(6) Two campersusin he roe et fid that

i contine keeps B o e ground.
A opsaader suggsns b ey mov
i so b e ropes s

horzontal. Explain why his would not b¢ 4
sensible solution 10 the problem.
[Edexcel 2001]

A uniform plank of weight 60N is 2000 mm long
and rests on a support that is 600mm from
end E.

At what distance from E must a 160N weight be
placed in order 10 balance the plank?

Jrmemen
I?I
——

A1S0mm B 2Smm C 375mm D 450,

{OCR 2001)

Fi, 433 dhows 3 i view of

edge rests against the wall at

o e by s 1 Fgh vl
‘A The mass of the cupboard is

its centre of gravity is 0.15m from the wall.
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Fi 430 s frobody fore diagram for the
cupboard.

(a) State the magnitude of force Y.
(b) Explain why forces X and P must have equal
magnitude.

(€) Calculate the moment of the weight of the
cupboard about point A.

@ Cilaste the vahe o fore X when
© m pmx.,.u the fixingscre
on. anywhere beeca o A and
cupboard. Sketch & graph to
on i for values of  from z¢r0 up to 0.60
() Explain why in practice the screws are usually
situated as high in the cupboard as possibl.
[Edexcel 2000]
(3) Define the moment of  force about a point.
(b) Figure 4.34 shows a model bridge consisting of
3 uniform plank of wood. The pank s L0m
ong andvmlghl 10N. A toy car
Splaed oot e tride opended om
by two stings and i in

(i) Show and label the forces acting on the

ridge.
(i) By taking moments about point P,
late the tension in string A
Caleulate the tension in string B.
[AQA 2001]

9 Fig 435 s« drving of a mobile crne which i
pponted oo whels at A B The weight of
The bae of the crane 528 %

G is the centre of mass of the base. The jib has a
o 3 AR oy dniroud hong
i length, . i the total pwards ocefrom the
at A when the crane is
Hiinga load of 15 10N,
@ O Wi down cxpresons for:
of all clockwise moments

2 e vt ol atcockvise moments
about B.

() Caleulate the value of Fy.

(b) State how you would calculate the masiaum
load which the crane could support in this

Saubriom, T pian docs mot uch the
shaded blocks.
g8
pank

N

Fig. 434

2 opp

() The jib in Fig. 435 is inclined at 60° to the

horizontal. Suggest how the angle of the jib

could be changed in order to support the

greatest possible load from near ground level
without causing the cranc (0 topple.

[OCR 2001}

10 (a) State the two conditions required for an object

0 be in cquilibrium under the action of &

system of forces.
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) A person stands upright on one foot with the
ball o the foot i ontact with the floor and the

forces, P, Q and R, s shown in Fig. 436,
a

Fig. 436

P = foreecxred oot by bone o g
0 = force produced by Mhn]]es tendon
R reacion ore of

(i) The reaction force R of the ground on the
foot is 625N and the horizontal distances

Caleulate the magaitudes of the forces P

and 0.
(@) When the pemson s the bee frher

e oces v it
ielaie o oo Exlin iether the
e e (LR

n

Fig. 437a shows some muscles and bones in the
am. Fig 437 showsthe approptiate distancss,

here C i the centre of gravity of the lower arm
ncluding the band, and F i the Tlerum at the
elbow joint.

() On Fig. 4370 draw labelled arrows to represent

nd
(i) If the weight of th
om0, ahow th he ot cxed by
the biceps muscle, to maintain the arm in

this position, is approximately 0.2kN.
(i) Use your answer to calculate the reaction
force at the fulerum and drawe ts direction

g 437,

12 (3) State the Principle of Moments.
(b) Some tests are carried out on the stabilty of a
table-la
() A siring s attached 1o the lamp, as
shown, puled it 3 sieadly
increasing force, F. When F it
72N the lamp it sbowt 0 ek, i
about the poin

cants ot
ey

—r
oo

(1) Calculate the momen (torque) of F
=72N.

(11) By considering when the lampis sbout

it calculateits weight. Iscentre of
gravity i shown on the diagram.



sTAncs

(iiy

canimot
Sy
-
e
“The lamp is now tilid, as shown, nd

released.
whether it wil all over or return (o the
upigh. P et 0 the disgram,
i) State two ways in which the lamp
st e ot
[WIEC 2001]

12 (0 Ian objct i o be i i s the
s number of copunr fores, two
Condiionsmus ppy. Sarethee comdi

(v) Deine the term couple s used in mechanics.
) () Awhec of rcis 030 s on v

roud at point C and makes contact with
e el E.of » kerb of height 0.30m, 35
shown in Fig. 438
2008
os0m =
T
Fig. 438

A borizontal force of 240N, applied
through the e of the wheel at X, is
required just 0 move the wheel over the
herb.

Show that the weight of the wheel is
180N, (CCEA 2001]
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Velocity, acceleration and

force

Velocity and speed

Velocity is a vector and speed is a scalar.
Sometives is diffrece e oot properly
recognised, so we must remermber i

Example 1

2

Fig. 5.1 Information for Example 1

A car takes 80s to travel at constant speed in

semicircle from A to B as shown in Fig 5.1. Calculate

()i s, ) i serage vl ) e chrge n
velocity from A to B.

Method

@ Spee

=25rms!
Total displacement
(B) Average velocity — 1281 Pl
=40
“®
= 50ms™ north

(€ Thesosd t A nd D 25w . but velocities
ing velocity to the ‘right” (cast)

~50zms”
Note: the negative sign indicates the change s tothe e,
Answer
(@) 257ms™, (5)50ms ™ norh, ¢) S0zms ™ to the
et
Example 2
A ship travels due cast at 30ms”, I it now heads due
Dorthat the same speed,caeulate the change n elociy.
Method*

Intalveocity @ = 3m

¥ =3m

Final velocity ¥
The change in velocity is

Fig 52 shows,

8 [Feamen

e
Fg 52 Soluonto Eampie2
Answer

Velocity change = 42ms”" north-west.

“To denose the ecor atue ofslocky we somerims s an arrow
it
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Components of velocity

Exercise 5.1

into two components at rlg.hl g, the same
way as force (see Cha 5.3 shows the
relationshipbetween ol velecuy R and
horizontal component H and vertical component
v.

el
Fig.55 Diagram for Question 1

An object moves along a semicircular path AB
of radius 40m as shown in Fig 55, at 4
constant speed of 40ms . Calculate () the
time taken, (b) the average velocity, (¢) th

" change in velocity.
Fi9.53 Componentsofelocky 2
s
Example 3
Ashll i st an angl of 3 10 the
Rorizontal. e shell ey i the i for i1 e
How arit lands from isorgina ame that
he rond s hrizoa an that s restanes may b
neglected s
Method N
Referto Fig 4 We requireth range . The horizontal PR —
componentof the i
H = 400cos30° = M7ms " Fig.5.6  Diagram for Question 2
he % Figss,
resistance is negligible. So range § is given by at a steady specd of L5ms™' the change in
H  Time of flight velociy,
= 347 % 40 = 138%0m 3 Ashellisfircd a1 S00ms™" at an angle of 0 degrees
1o the horizontal, The shellsays n the s for 805
R — 24 bt
T ground i horzontal and that st restance may be
leted, calulte (s) the horizontal componert
of the velocity, (b) the value of 0.
Acceleration
Uniform acceleration means a constant me of
change of v Ioc:ly ~ for example 4m:
second (4m:
B ——
[y — Example 4
754 Solutonto Example 3 A car moving withveocity .0ums ", i some direction.

Answer
“The shell lands 14 km from its original position.

accelerates uniformly at 20ms~* for 105, Calculate
(2 th il ey, ) the dianc rveled during
the acceler
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Method
(a) Increase in velocity
Original velocity
Final velocity v
Allernatively, o find v, use

reuta v &

here acceleration a = +20, time 1= 105 and
inital vlocity u = 5.0. So
5+2x10

52)

15429 10=15x 1P m
Answer
@ 25ms, ) 15 % 10 m.

Exercise 5.2

1 Abody starts from rest (u = 0) and aceclerates at

30ms™ for 40s. Caleulate (a) its inal velo

Equations of motion

These are:
v=utar s1)
Vw2 53
s=ut+ ot (54

‘The meaning of the symbols was given earlier.
These equations are_obtained by combining
Equations 5.1 and 5.2, and are recommended
because they are more convenient 10 use.

Example 5

ovng il ey 10m
oyt S0’ Coculte 10 »mm, g

traveling 200m.

34

Method
We haveu = 10,
Equation 5.3 is used
900

= 30ms

20and s = 200. We require v, s0

S0 2% 2200

Note that since 1 is unknown it would be more difficult
10 use Equations 5.1 and 5.2
Answer

Velocity acquired = 30ms".

Example 6

How far docs a body travel in the fourth second if it
starts from rest with a uniform  acceleration of
20ms’

Giees rmled 3+ and 43 rspecively Trom
equation 5.4

0xd+ix2xs

Distance travelleds; 5, = 7.0m.
Answer
“The body travels 7.0m in the fourth second.

Exercise 5.3

1 1t required to uniformly accelerate a body from
rest 10 a velocity of 12ms™! in a distance of
020m. Calculate the aceeleration.

2 Calculate the quaniitis indicated (assume that all
quantities are in SI units):
@u=0, a=10, s=d5
M u=15 a=-15 v

3
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Motion under gravity -
vertical motion

Graviatonal atiration produces  foree which,
earth, causes a free-fall acceleration g of
appmxvmax;ly 9.8ms"%, For simplicity we take
= 10ms" here. The force is called the ‘weight'
of the object concerned.
motion

“Free' vertical

accelerated  motion,
opposing forces, in
depending on the direction chosen as positive.

Example 7
An object is dropped from  heightof $5m, Calculte
{3 the time aken 1o, each the.ground, o

locity. Neglect air revistance. (Ass

3 itwe
take downwards as the positive dircetion. We require ¢
andv.

(@) To find 1, earrange Equation 5.4

(b) To find v, use Equation 5.1

0+10%3

v=30ms
Answer
(@) 305,(b) 30ms™"

Example 8

A cricket bal i thrown verticaly upwards with
welocity of 20ms " Cn!mhle (a) the maximum height
reached, (b) the cen to return 1o carth. Neglect

(b) On ts return to carth, afer time , we have s = 0.
o, using Equation 5.4

St <

s

(Note that £ 0 s also, obviously, # solution when
o.

Aliernatively find the time (o reach it
height, (when its velocity is zero) which is 205,
and double it

Answer
(a) 20m. (5) 40

Exercise 5.4

(Assume g = 10ms %)

1 A bl s dropped from a liff top and takes 305 0
feach the beach below. Calculat (a) the height of
e i, (1) the vlocity acquired by the bal

2 With what velocity must & bl be thrown upwards
o reach a height of 15

A man stands on the edge of a clif and thows
stone vertically upwards at 15ms". After what
time will the ston hit the ground 20m below’

Motion under gravity —
projectile motion

“This includes objects which have horizontal as

e
vertical components, whi
separatel. The vertical component determines m(
iime of flight (and any vertical distances) and
horizontal component determines the range.

Example 9

Axmﬁcupﬂv’zcmu horizontally with velocity 3.0ms !

() At the maxinmum height, distance s from ground
levelthe velociy v i eo.
From Equation 5.
Vo b
O =204 2% (-10) x5

s=20m

200m high. Calculate (s)
how long i akes (o reach the ground, (b it distance
from the foot of the clif, (c) it vertical and horizonta!
components of veloiy wher it bl the pround
Neglect air resistan

Method

As in Fig 5.3 resolve initial velociy into its components
S7hy

35



(@) Trajoctory of stone

Fig.57 Solutionto Example 9 (not 0 scale)

inital vertical componet
initial horizontal component = 3.0ms’
(8 The verial mation decdes the time o ght
Taking downwards as positive we have u
m 10mes To find e

s=us ot
200=0xr 441057
V0= 635

(b) The  horizontal component of  velocity is
unchanged (see Example 3). So
Range § = Horizontal velocity x Time
=30 V40

(€) The vertical component of velocity when the stone
i te round required. From part (a)

“The horizontal component remains at 3.0ms .

Note that 1o find the resultant velocity R of the
sone on hting he ground we, mist wdd e
components vectorialy, as shown in Fig 5

Answer
(@ 635,() 19m, () 63ms™',3.0m,

———20m

Fig.58  Diagram for Question2

Watr emesps bossondaly o bosepipe with
velocity of 40ms™" as shown in Fig 5. The pipe

el o P om » verinl s 20m o

the pipe. If the water srikes at §, calculate PS.

A el s fred from . gun with a velocy of

(&=10

Force, mass and
acceleration

A net force F (N) applied (0 a mass m (kg)
luces an acceleration a (m's ) giver

F=ma 55
By net force we mean the resultant force arising
from applied forces, fiction, gravitational forces
and so on.

Example 10

A earof mass 900k i on a borizontal and slppery
Toud. The whecl sip when the otal push of the
Whess on the road. cxceeds S00N. Cakiate the
e aeeleation of e .

Method

Itis the push of the road on the car wheels which is
responsible for acceleration. This is equal in
magnitude, but opposite in direction, (o the push of
thewhoss o the roud. We bve m =500 wnd = 00
50, from Equation 5.

500 -
00— 0356

(Neglect air resistance:)

1 Repeat B
velocity o 40ms

Example 9 for a stonc having a horizontal
and a chff which is 100m high.

36

Example 11

Acarof mass 1000 of mass 800kg and
the two have an acceleration of 20ms . If the only
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external force acting s that between the driving wheels
he roud, calculate (s) the value of this force and
the coupling between the car and

Method

(8) For car and caravan combined we have
m = 1000 + 800 = 1800
). From Equation 55 the force F

required is
F=ma = 1500 x 2= 3600N

Fig.59 Solutlonto Example 11

(b) Refer o Fig 59. T i the tension in the coupling

s the force accelerating the caravan. So for
the carman alone we have m = S00kg. and
a=20.

T =ma = 800 x 2= 100N

Note that the net force on the car alone is
F—T = 3600 - 1600 = 2000N. This gives the car an
acceleration of 20ms ™,

Answer

() 36KN, (b) 16KN.

Example 12

An aircraft of mass 20 x 10" kg lands on an aircraft-
mrxmdukhnn horizont of 90ms . If it
s brooght to est i a distance of 100m,cakulate the
(o) et oee acing o he .
Method

We must first find the (negative) acceleration a of the
planc. We have 1 = 90, 100 and. from

Equation 53
Veu s
0= 90 4 20 x 100
a=-405ms?

The negative sign indicates that the force s in the
opposite direction to the original velociy.

Answer

Retarding force is 81 x 10*N on average.

Exercise 5.6

1 Colalat the quanies e (ssume har ol
quantiics are in ST units):
(@) a=25 m=30, F=___
(b) F=15, m=30, a
© =25 F=75 m=__
2 Aforce of 4N acts on a mass of 6.0k initlly at

rest. Cakulate (8) the acceleration, (b) th
distance travelled prior o achieving a velocity of
00ms™.

3 A fomy of mass 30 10°kg pulls two traiers
ot s 20,103 g oo
oad. I he lory & acccrating uo
calculate (a) the net force acting mc wha
combinuion, (4) the tension in the coupling
between lorry and first tair, (¢ the tension
in the couplng between. fit and second
rstrs.

& A metal bal of mass 030k i dropped from the
o el o gt S0 Wen i
the beach below it penetrates 10 3 depih
e Cliate () te ey s he
bal just s it hits the sand, (b) the (wersge)
setardin foree ofthe sand. Neplectair resiiance;
g=10ms~,

5 What net force must be applied to an object of
mass 50kg, initally at rest. for it to acquire
velocity of 12ms * over a distance of 0.10m?

Non-uniform acceleration

So far we e asumed contae aceleraton,
ith time is

throughout the motion. The slope of the velocity
versus time graph at a given time i the

Force F required,since m =20 10, is given by
Fma =20 10" (405)
10N

Often a movement can nc comsidered o be made
up of two in each of which
Secleration % consant (e below).
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In each case the area enclosed by the velocity
time graph is equal to the distance travelled. This
is explained in more detail in Chapter 30.

Example 13

A car acecterates from st for 305, then travels at
constant velocty for 20s before decserating for 205
ad coming bk 0 1. The loy-ine g (o

Terminal velocity

Lig rt a viscous drag force

which opposes the motion of objects which pass

through them. As shown in Fig 5.1, for a sphere.

of radius r (m) moving with velocity v (ms™")

through a medium of viscosity 7 (Pas) the resistive

force F (N) opposing its motion is, assuming
i jons, gi law:

@) 105 (i) 255 (i) 405 () 605
(b) Estimate the total displacement after
@ 30s (i) S0s (i) 05
oy .

Ea w

Fig. 510 Information for Example 13

Method

(8) The acceleration a at any time is the gradient of
the velocity-time graph at that moment.

O A time 105, grdient of AB =520

025m:

i) Al llm( L 255 pradient of BC=1010
(i A
) At time s

brad;

e 40, grcient of CD = Oms™
gradient of DE = -1

Note that the ;\m of DE is negative, thus indicating a
negative acceleration, or deccleration.
) Tho ot disance lmcllul 1yt s the aea
under the veloci
[0} Axczupml e of 308
aes ncer AD +area under BC = 50+ 100

Areaup o tme of S0
s “area under BC+area
+ 100+ 300 = 450m
Alnu]\mlnmeor'msn
area under
nder CD 1 area under DE
= 504100+ 300 + 150 = 600m

BC 4 area

Answer

(@) () 025ms™ i) Loms™ G 0
~0.75ms”

(b) () 150m (i) 450m (i) 600m

38

F=6myr (56)
Thismeans that pher aling under ey il
eventually reach a ter ich time.
The grovitaionl fore s balaced by th viscous
drag force (we neglect any upthrust due to
buoyancy effects from the liquid).

angr
S| = - P seostyy

l wehimy
Fig. 511 Viscous drag n aallng sphere
Example 14
Asperal ds il of dameer 20m ol from
et under gravity until it atains  Steady
el
(@) Calculate the value of this terminal elociy.
() Sktlth a m oh of the particle’s velocity versus
s he regions of masmum and
i setron.

‘Assume the following values:
viscosityofair 7 = 18 x 10~ kg 57!
density of dust p = 20 x 10'kgm "
acceleration due to gravity g = 10m s

Negert the el of the uathut de (0 Ducancy

effects of the air on the part

Method

(o I the dust partic b mase m then,when it s

. the terminal velocity, its weight mg s
Balaned by the icous dag force duc 0 the s

We|gm mg = Viscous drag force 6zn
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Since e dit puricc s et ten
473 x =rp, where radius of the
particle = 10 % 10 m s its density.
Thus, substituting for
$em g = bmam
=20y 6
Insering the values for 7, p.g and 1 gives

4710 ms !

terminal velocity v

It s worth noting that the terminal velociy as

Sated i cquaton (57) i proporionsl 1. the
square of the radius of the particl, so that larger
parices ataln  Highe termial vloiy n this
cue steamlce o may

ou F = ano 2o oger ppis

®) The v:lu:ily—(m graph s drawn in Fig 5.12. Note.
hat the acceleration will be 4 maximum at
commencement of the motion, where it will have a

‘wloey

s
Fig5.13 _ Information for Queston 1

2 When a spherical drop of
90 10°kgm i alowed 1 fal m.m.,n o
of vacosiy 12x 107 g st reehes &

al velocity of G.Lim)f‘ Caeulae. the
radius of the d = 10ms'? and o
e upthrst from he g due 0 buoyaney el

s negligible

braking and

i e be oepleted). Ous temival velocly &
4, the

distances

attaine
facts can be seen from the mam of
the velocity-time graph as shown i Fig 5.12.

Velsiy!

When a motorist_has to brake his stopping
distance is determined by the initial specd, his
reaction time (the interval between receiving a
stimulus and acting on it) and the deceleration
due o the brakes.

Example 15

Acaris el ta pesdaf- Zﬂnu and the driver

0ms
omdant =0
& e secoloraon)
2 A
sof 7 g i

Fig.5.12  Solution to Example 14
Answer
@ 25107 ms™

d:odemmn wm gt app!y 1o the car is
50ms
(o the dbtane il prio 1 e diver spping
brakes (he thinking disance)
® e dnlAnce travelled during the braking and prior
ing (the braking distance)

DT
Exercise 5.7 Method
(a) travels at t d

1 Fig 513 i a velociy-time graph for & moving
body.

@ c.k-.m: the e of theacslerion at cach
D of its motion
® Calcuh(: the distance travelled in cach stage
and the total distance covered.

of 20ms™ for 080s. Thus thinking distance
specd x time = 20 x 080 = 16m

®) We 50 (note the negative
ecemion) and s 0, We e the wring
disance . Reamunging quulvun 53).

40m.
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(€) Stopping distance = thinking distance.
braking distance

Answer
(@ 16m, (b) 40m. (¢) S6m.

Exercise 5.8

1 A motorist with a personal reaction time of 0.60s
i driving along a straight road at a speed of
I2met when he see o pedestran walk ot in
front of his car at a distance of 20 I the
car and drv have 3 tola s of 00K and the
average braking force is 5.4kN, determine

(a) the thinking distance,
(b) the braking distance,
(€) his stopping distance.

A motorist has a personal reaction time of 105 1 he.
s travelling at 30m ™!, ot what rate must he be able
10 decelerate ifhe s o stop in a distance of 120m?

~

Exercise 5.9:
Examination Questions

(Assume g = 10m:

except where stated.)
1A shot putie throws & shot forward with @
ekt of 10ms™ ilhrespect (o il in 0
the borizontal. At the
ime he. shot puter oving fmwxrd
orizonuaty ity
Coleulae the magaitude and sivetion ot
resultant velocity of the shot.
2 (a) Physical quantities can be classificd as scalar
quantiies or vector quaniities. Explain the
difference, giving an exampie of

60 Al sl ot s constant s of

ms oumey tward 8 desinaton

e ot af starting point. A wind is

owing at & comstant specd of 30ms”! from
the west_ Find, by drawing or by cakculation:

() the direction in which the aireraft should

(i)t specd ofth arcrat aver the gound.

[OCR 2001]
car, originally traveling at a speed of 30ms ",
decelérates uniformly o rest in a time of 20s.
Calculate the distance travelled by the car in the
first

4 A car accelerates uniformly from rest for a period
of 80s in which time it ravels a distance of 48m.
alculate the scceleration.

5@ 0 u..m“mmummwo, taken
a body’s speed.” Commznl on tia
i e improve

g e i 8 comeat slemiin,
a, for a tim
) mua  veociy-time graph fo the

an D:duec from the graph, that the
s, travelled by the body in
{ime 5 gen by

s=laf.
) 00 » butng i, bgs of coment, ech of
re placed on mp and
Uowed to lde down it The dingram shows
the three main forces acting on a bag.

3

() Give the name of each of the three forces
(i) (D) Caleulate W, given that the mass of a

g s S0kg.

6 et the componnt of ¥ which
acts down the s

am m wae!emwu of a bag down the

. Cakeulate the

—oF. aphm your reasoning.

sloping surface. The bags start from rest.
[WIEC 2001]

6 A stone is dropped from the top of a tower of
height 40m. The stone falls from rest and air
resistanc is negligibl.

How long does it take for the stone to fall the last
10m o the ground?
(Useg = 10ms™.

A038s B1ds C25s D 28s [OCR2001]



veoary, RCE

7 ans m:un it trmeling nomom..ny at250ms™

e falls off. 1f the

et B lnvellmu e “Reight of 45k,
calculate

@
10 the ground (neglect ir resistance)

(b) the horizontal distance it will have travelled in
this time.

(©) its velocity just prior 1o impact with the
ground.

e can be

8 In this question, all ffects of air
neglected.

An athlete in the javelin cvent runs along
horizontal track and launches the ;.mm "
angle of 400" o the horizonial. The

1 masimum beight and then Gl (o gmulm
lesel. It its the ground 4.00s aftr launching. at a
point 4 hnllmnl:l distance of 752m from the
launch

(3) (3) Show that the horizontal component of
the launch velocity is 18 8m s
(i) Caleulate the magnitude of the launch
velocity.

(6) The length of the track from the sart of the

Ahete’s run 1o the faunch point i 33.5m.

[rm this run, the athlete ﬂlm lmm rest and

scclres oy 3t L50ms ot he

complcte kength o the

b Coleune the seed o the i vten

she reaches the launch pon

(6 Corment on y diference betwen your
answer to (b)) and the vale quoicd in
@

In the calculations in parts (¢) and (d), treat the

javelin as 4 point mass.

@ The jmveln lemes the atitcs band ot 3

height of ound. Caleulate:

e masiouns height sboe. the
reached by the javeln.

ground.

() For the javein stiking the ground at the end
ofits
(i) the vertical component of the velocity
(i) the magnitude of the velocity. (Make use
of information in (2)().)
[CCEA 2001)

9 A ball is 10 be kicked so thai, at the highest
point of its path, it just clears a fence a few
metres vy Fihe wjectory of he bl 5 shows
in Fig 5.1

10

514
The ground el and e (o s 2 igh Toe
bl is kicked from ground el with a

veldyof 80 Soms! \atanange 2o the ozl
A

® Show ht, it |n\ld=m the fence, the
angle of projection a mus be 55
i) r...d the horzoma velochy of the ball s
(i Coeoate the st e o whichth bal i
i from the instant it is Kicked unti it
reaches the ground.
Assume g = 9.8ms

[CCEA 2000)

A railvay locomtive of mass of S0000kg exerts a
of

A035 BO78 C180 D340
[OCR Nuff 2001]

%

‘The diagram above shows & Concor
for take-0ff Is engines are fuming s
are still on, and it is not yet moving.

() Mark on the diagram, using arows and
letters, the directions in which the following
forcescton the sircrft

) its weight, labell

(i) the foree caused by the engines,lbelled

(i) the tota force exerted by the rumay,
labelled F'.
Describe the sum of these three forces.

Here is some data about the Concorde during
take-olf

Total mass 185000ke

Average thrust per cagine  170kN
umberof s

Take-off spe 2ms !

®) Calcuhm s acocleration,

(€) Caleulate the time it takes to achieve take-off
speed from rest.

(d) Show that the distance it wavels from rest 0
the take-off point s about 1700m,
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G one sssumpion you hav made in doig
these calculat

Suggestone
Concordes are always oo longer than T
[Edexcel S-H 2000]

12 @) ch: 04 sesseulon re both vecir

(.) State what s mean b a vector quaniy
) Name one other vector quantiy.

(b) Two men are
block by pulllng T ropes e i o
ring which is attached 1o the block. One
man exerts a pull of 260N 1o the East and
the other exerts a pull of 150N to the
South, as shown.

O Caklatethe magntude () and

the forces

lppheﬂ w e men "Explin how you

@ Inscad o th bock ‘moving, the ring

cdely braks avay from the block

Cleutte the acceleration of the
i 1 s 60K

(WIEC 2001]

13 The diagram shows e ks which e it of
‘The mass of each truck is 84000 kg.

sodon

<

Tt oot

The tin scelestes oy in he dircion
shown from rest to € of 40
s G . sl fore o exch
truck.

The force exerted by truck B on truck C is
11200N. Draw a free-body force diagram for
ik B shoving the magituds of sl the
forces. Neglect any frictional forces on the
trucks. Edexe 200, par]

14 Acaris taken for a short est-drive along a straight
ity vs. time graph for the first 40
scconds of the driv is given below.

W w % % W ®
Tineis
9 Calete the soskernion of te ar g
20 scconds.
0} Cx]r.ullm the cars displacement e
(1D 40 seeonds
(il At 40 seconds from the start of the drive the

ar sars o dow down
Dukg te doclen
fore

final stage of the drive.  [WJEC 2001, part]

15 (3) A vehicle on a straight road starts from rest
and aceclerates at 1.5ms for 20s. It then
travels for 200s at

O Stk e gt &

bt e vy
iy appropriste valus.
@ Fid e 'l dtane rveled I e
ce calculate  the
speed for the wholc journcy.
(i Skecha 2 diplcement e gagh o he
2505 period. Label the time axis
with appropriate values.
Inthe lloing pars (1) 200 (0) o s usion
acccleration of free fall and
ot s eane

(b) A stone s projected with a vertical component
locity of 30ms from the edge of the top
tower 200m high. It ollows the trajectory

shown in Fig 5.15

Fig.5.15



vewocny,

Caleulate

) the time afir projection at which the
stone reaches its masimum

i) m maximum height reached above the

round,
(@) the toal ght time untl e stone
reaches the ground.

© Anmha stone is projected into the air from.

level at 4 velocity of 25ms
Soaie o3 1 te hor

atan

Fig

de and dirction of the
velociy 0.60s after projction.
(@) Itis posible t project the stone i (¢)with the
same s ' et rgle
o the horizontal, 50 that actly the
i borzonal enge a8 i (10 Coy g
516 into your answer booklct, and on the
same diagram draw a labeled sketch of the
trajectory obtained with this altermative angle
of projection. (No caleulation is equir
Stat, with a reason, whethes the time of flight
i s seond ety e s, e
or s than e i of g
m..m stone is projected with a velocity of
o T o the poral (. (N0
Calculation s required.) [CCEA 2001)

16 Some pecple ik tat ot e a2 the

speed; others think that their speed
epen o thels e
(3) Calculate the speed of a raindrop after it has
fallen freely from rest for 0.25.
&) The indrop s for longer than 025
why its acceleration docs not remain
e o he whole o

Show, that the mas o 05t dmgier
spherical rai less than 1% 107 ke,
10m® n{w-lcrl\ulmmn’!(lxm‘kg
@ Crlelate the indrop's erminal veocy
t the upthrust from the air is
n:yxgvhk Explain your working clearly.
Viscosity of air = 1.8 x 10~ kgm ™' 571
(€) Skeich a graph 10 show how the raindrop's
velocity inereases from rest 1o terminal
Velocity. Add a scale o the velocity 2xs.

T
® Explsin bow the teical velocity would be

different for a larger raind
Peset 5112001

17 A rudent s 1 desdocnt spay i spews

sy small droplets into the air. The
below shaws. oné of these dropcts falling wih
terminal selocty.

@ On o copy o the dagram, drow lbsled
s 10 Tepresent the forces acting. Assume
{hat the uptrst o heait 5 gl

What s the relat the forces
when the dmph:\ is [n\lmg P
velacity

(b) After reaching terminal velocity the droplet
falls 25mm in 60s. Calculate the terminal

ity

Hence estimate the time for this droplet to
loor.

reach the fl

(€) Write down an expression for the weight o
the droplet in terms of radius r and density

(d) The viscous drag F acting on a droplet P
radivs ¢ Galling with terminal velocity v
through & medium of viscosity 7, is given by

the expression

F=6up
‘Show that the radius of the droplet is given by
o
Vo

Hence calulate the radius of the falling
droplet.
=18 10 Nem?
= 920kgm™?
In the calculations above, the upthrust of the
sit s ssumed to be negighl. Explin why
is £ a reasonable assumptio
Density of air = 1.2kgm™
[Edexcel S-H 2000]

a3
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18 A vn doher, making n ergeney wop from »
o of 18me-, veuies o inking dancs of
Brnands braking distance of
(0 Showiog you aleationy, detemine
() the reaction time of the drive
(6 the mergedesirutionof I van during
raking.

(b) The same van, with the same driver, is
following a car on a motarway. Both vehicles
are travelling at 30ms ", and the distance

ermeen the front of he van nd the ear of
5m. Determine, using a suitable
vheter o ot the

it

braking are cqual, [OCR 2001}
19 The following table gives data taken from the
Highwiay Code for “Typical Siopping Distances’ of

a car when braking.

S Specd Thinking Braking Stopping Deceleraton’
miles ms-! distance disance’ distaocel s

per momom
hour

w8 6 ) 6
Wowps 9w n 64
oo %8

w N3 a3 65

The tinking dices” b he dianc be car
oves the driver is reacting before the
ke e awl

(a) Caleulate the thinking time for a speed of 20
miles per hour.
Explain why the thinking distance varies with
specd.

(b) The ‘braking distance’ s the distance the car
travels while decelerating once the brakes
have been applied.

9 Show i the decleration s bout
while braking from a speed of 50

per hou.
i) Gt e braking force which
produces this deceleration for 4 car of
ass 900k

(€) Brakes depend for their operation on the
friction between brake pads and a steel disc
connected 10 the wheel. A text book staics.
that the magnitude of this friction does not
depend on how fast the car is going, provided.
the wheels do not lock.

Use the i in the bl 0 s hetber
the resuls are consistent with this st

of the car is
much greser. 1 he braking force remion
the same, exphain how this would affect

[Edexcel S-H 2000}
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Energy, work and power

Energy

Mechanical energy exists in two basic forms:

(0 Kinericenergy (KE) i cnergy due o motion.
2 (m is the mass, v the velocity of
the body

@ Pulmbal i (PE) s cnergy stored - e in
g or duetothe podboa e
body i toce e, Graviations PE
(m 1o s g s acclrnion o to gy h
is height above a datum), and is encrgy stored
in a gravitational field (see Chapter 9) due to
the elevated position of the body.

Work and energy

Work is done when energy is transferred from
stem 10 another. It involves a force acting
over a distance. We define

Work done (J) = Force (N) X Distance (m)
@1

Also Work done = Energy transferred (J)

Example 1
A body of mass 50kg s intaly at rest on  horizonial
rictionless surfuce. A force of 15N acts on it and
accclerates it 10 4 final veloity of 12ms . Caleulate
(@) the distance aveled, (b) the work done by the
fore, ) e vl K o e
pare (b) and (¢) and comment.

Mnhod
(a) We have m =50, and
it divan 3 we it Gt atlorton &, Fromn
Equation 5.

30ms

Using Equation 53

Vit 42
122042035
4m
(1) From Equation 6.1
Work done = F x s = 15 x 24 = 360J

The answers o (b) and () are the same. This is
ce of friction forces

ok done b e frce

besomes K of e moving b

Answer
() 24m, (b) 36 10°0, (¢) 36 10°1.

Example 2

ER—
o e
Mest 2019
Fig.61 nformation fo Examplo 2
RefroFg 61 Ak of mum 30k e S0
plane, incined 1 30 tothe horizontal, by
e of 25X paralel o he plane. Fnd h wloiy
ofthe block when it reaches the topofthe planc
Method
Work done on thebody becomes KE and PE. o, f inal
veociy of block i then
Work done = (KE + PE) ganed by block, ot
Frs=dm® meh
We e F=25, 5=50, m
B 50530 2550

=10 and

a5
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ot thtinthe sbovewe donr sttt ro e 25N
force the i of weight acting ‘down’ the plane
(g0 o Chapter 4 e roiuionl efec
have been accounted for in the PE term.

Answer

Ssms.

Exercise 6.1

1 Caleulate the kinetic energy of the following:
(@) a car: mass 900 kg, velocity 20ms™';

() an acroplne mass 20 % 10'kg, velocty
200ms '

ass 9.0 10V ke, velocity

2 Aloweof 1N i spped 1o by o s 30k
tal surface,

s e of 300 Caluse () e sl »exnuvy,

(b) the distance travelled, (©) the work

(d)the final KE of the body.

A block of mass 10kg s pulled 20m up a smooth

plane inclined at 45° to the horizontal. The block

is initially a1 rest and reaches a_velocity of

20ms ! at the Jop of he plane. Clte he

magnitude of the

M

(6) Al the PE has been converted to KE just pror to
riking the ground. So
Final KE =225
(©) Let finalvelocity b v. Since KE = L then
25105 v
v=30ms!
Note tha thefina velociy does not depend on the
imass because it cancels out sie 31s? = mgh,
Note that, as in Example 7, Chapter 5, we could
fave ohed this wsin e sausons of moton
with acceleration This is
s it vsnc s gl

Answer

@ 2310°0, () 23 %16, (©) 0ms!

Example 4

[e—

porale 0 the plne.

4 A body of mass S0kg is pulled 4.0m up a ough
plane, incined at 30" (o the horizontal, by a force
o SON panll 0 the pane, i te oy of
the block when it reaches the top of the plane if
the frctional force i of niagnitude 12N,

Energy interchange

‘The principle of conservation of energy states that

the total amount of energy in an isolated system

remains constant.

disipiv ffect e retion,r gnored e
ave simply KE and PE interchange.

Example 3
A ball of mass 050k falls from = height of 45m.

Calue a) s il P, ) it il KE. 0 s gl
egloctai resistance. (Assume g = 10ms %)

Method
(a) We have = 0.50,h = 45,5 = 10. S0
PE = mgh = 05 x 10 % 45 = 2251

a6

Fig.62  Information for Example 4

Refer (0 Fig. 6.2, A truck of mass 150kg is released

locky a1 C. (Assume g =
Explain what happens when it eaches D.

10ms

Method

(a) Maximum KE is when PE is a minimum. This
atB. We have

Gain in KE = Loss in PE (mgh)
Since m = 150,¢ = 10,5 = 60,
Loss in PE = 150 x 10 x 60 = 90000
KE gain = 00K
(b) Mairoum velosity v occurs for maxioum KE.

Ve VI200 = 34 6msTt

) ALG, e drop bt b s 40 bekw A So f
velocity at Cis v,
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Gain in KE (Emy?) = Loss in PE (mgh,
50T = 1505 10 x 40
VA0 = 283ms !

Note, once again, that v, docs not depend on the
mass of the truck.

The rck aries 21 D vih o KE, bhencs zery
ince its PE at D equals its PE at A. It
5 o roll back o0 C, B and A.

pros

Answer
(@) 90K, (b) 35ms~!, (c) 28ms "

Exercise 6.2

(Asume = 10ms™)

An object of mass 030kg is thrown vertically
s and reaches a height of 80m. Caleulate

(0 i i P () the vlcty withwhich i must

negecting i resistance

A cricket of mass 25 has a vertcal velociy of

20ms when it jumps. Calulate (2) its

masimum KE and (b) the maximum vertcal

‘Lost’ energy

forces, c.g. friction and air
cannot be neglected, then some
in the sense that it is
Comentea to auhe forms (5. heat.

Example 5

A Ballof s 0 20k i hrown vericaly upwards wih
a velocity of 15ms 1. I it reaches a height of 10m,
i e g o o e 3
reitance (Assumeg = 10ms )

Method

“The final PE is less than the ital KE due to transfer of

energy (o the mrm\mdmg air. We have m = 0.20,
=10,

u=1sh=

Initial KE =
Final PE = mgh

=200

Energy transfer = 225 - 200 = 25J

120215 =251
2x10x10

height it could reach. Percentage lows — VTR ransfer
crcentage loss - E0STR ranser
3 A ball of mass 020k drops rom o hght of 10m
ind rebounds 1 a heght of 70m. Calcute the 25 oo
cnery Jost on mpact with th floor Neglect air
-y Answer
A KE
i cnghof h s s . i e
‘velocity of the pendulum bob at its lowest point. air.
s e Example 6
Al f s 0k s il i o ity o
e ' g e e 045 -t
horizontal. plane, caleulate ()
v e i ol oo (5 e
magaiude of he (weroge) frction fore. (Assume
&= 10ms )
Method
[} N\hae
7 ®
. o - s-30m
© Duprcmonn Noonpis
6,63 normasn or Gueston {
& s nssm
Fig. 63 shows the PE verus dplaccment graph
for a body, of mass 010k, sing about 1 # = ticton orce
point C. I the body has total energy 01161,
calculate its velocity at m Aand A, (b) B Block

B, (¢) C. Neglect friction, ai resistance, etc.

Fig.64  Solutionto Example s
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Refer 10 Fig. 6. Initial KE becomes PE and
gy dpated v wock done (F x) agit
friction force F.

Ix6x12=6x10x35+Fxs
Fxs=221

®  Fxs=22 and s=50m
FotN

Answer

(@) 02, (1) #N.

Exercise 6.3

(Assumeg = 10ms %)

1 An object of mass 15k is thrown vertically
s with 8 vty of 25ms " If 10% of its
I energy is dissipated against air resistance,
s wpward Tighs calulte () 1 maimum

PE,(b)th heiht 10 hich
A cricket ball of mass 0.20K is thrown sertially
etums to
ot air

Fig. 65 Diagram for Questiond

energy output will be less than the energy input
due 1o energy ‘lost, e.g. in work done against
friction. We define

Efficiency (%) X
M <100) (
T e (OISR
Power is the rate of transfer of energy - ie. the

work done in unit time. The SI unit for power is
the watt (IW = 1Js ™).

Example 7

A LOKW moior dries & punnp which s water

o gt .l e o v
s (o0 100%

lﬂml )

e ™ preghorng (A:nme:

Method

(o Exchscond the moor e 1001 of eners
ime is all converted to gravi

tational
7o e wair, e hov h 15 on require
mass m. So

1000
m=67ke

(b) Only 75% of 10003, that i 7501, becomes available
to1ift water. o, if the new mass iy,

750 = mygh = my x 1015
my = 50kg

mx10x15

Answer
(a) 67kgs™, (b) SOkes™
Example 8

20 % 10°kgofwater moving at 22ms
water wheel cach second. Calulate the maximum
poer output from the mill,asuming 405 efficieny.
Method

Fig. 6.5 she f
rough inclined plane. The mass
and acquires a velocity of 40ms
of the incline. Find (3) the work done against
friction, (b) e (average) frction force.

Machines - efficiency and
power

A machine is a device that serves 1o transfer
energy from one system to another. The useful

a8

Encrgy inputi
m=20x10"andv =22ms". So
KE input = bmv? = § x 20 x 10" x 2
=484x10')
O thisenergy 40% becomes usefl nergy output. So
rearmanging equation (6.2)

TR,
Useful energy output = iy x 484 x 10°
— 104103
Answer

Maximum power output=19kW.
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Example 9

A boat travels at a constant velocity of 80ms ™", If the
engine develops a useful power output of 20KW,

© The engioe st apply an addiional fore of
L0 10°N in excess of that in part (3). S0
i st aply vt o o 0 1N,

‘Whyi the boat not accelerating?
Method
‘When a motive force drives an object, such as the boa,
then the useful power output, or motive power, &
givenby:
Motive Power P = Rate of doing work
= Driviog force X distanceltime
= Driving force F x velocity »

We have P = 20 x 10%,v.
210" = F x 8

80, and require F. So

“The boat is not aceleating because the resstance to
motion of the boat s it passes through wate is cqual
10 2.5KN. The net force on the boat is thus zero, 5o it
does ot acelerate.

Answer
25K,

Example 10

Aot mes 10 19 kg iyt e s
unifor o the power required

i 305 and 805, asuning (v 00 s forec,

(b) resistve forces of 1OKN act.

Method

Equation 63 tells us we require orce F and velociy v at

a given time in order (o calulate the instantancous
rP.

(@) To find F use Equation 55, with a = 0.50 and
m =10 10" So

F=ma=05x10x10'=5x10°N
Tofind v after £ = 505 and ¢ = 805 use Equation
da =050, Thus

afterSs, v=0+05%
after8s, v=0+05x
From Equation 6.3 we have
afterSs, P=Fxv=5x10'%25

125100
afterls, P=Fxv=5x10x4
20100

afterSs, P=Fxv=6x10'x25=15x 10’
after8s, P=Fxv=6x10x40=24x10
Answer
() 125KW, 20kW (b) 15KW, 24kW.

Example 11
A car of mass 1.2 x 10°kg moves up an incline at a
steady velocity of 15ms " against a frictional force of
06K, The incine i suh that it rises 10m for very
10m along the incline. Cakulate the output power of
the carcngine. (Assume g ~ 10ms
Method
“The carcngine does work against ficion forces and in
o the PE of the ca o oves up the i
Tefeing tocnergy ransfer per second e

_( Ratcof coing Rate of
o = (o fion) (el m)
v mgh
F (rictional force) = 060 x 10"
Velocit) =15
mmassofcan) =12 10°
N -1
 gain n height per second) = 15 o

where

i
(06 10" % 15) + (12 % 10" x 10 x 15)

Exercise 6.4

(Assumeg = 10ms ™)

1 Calculate the power
180kg of water per minute
5.0m, assuming,

(@) 100%,  (b) 50%,

rating of a pump if it s to lft
through a height of

(€) 70% efficiency.

2 200kg of air moving at 15ms~ s incident cach
Second on the vanes of a windmill, Estimate the
‘maimum output power of the mil. Why is

not achieved in practice?

A hydroclectric power station is driven by water

flling on 10 a system of wheels from a height of

100m. If the output power of the station is

49
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TOMW (10  10°W), caleulte the rate a5 which
water must impinge on the wheels, assuming
(a) 100%, (b) S0% efficiency.

-

A g of s Aok, iy o o, sl

rmly and reachs 2 ater 10 sonds

cloped by the engine afer

(15050 0 6 e o th
positon. Assume that resisive forces are ey

Repeat Question 4 with a constant resistive force
O 050KN acting.

ol caman of s 8D upan cine o
5 (hup fo 100 g e i) 1 3
iy of 10 nihe o

(©) The same average power is maintaincd when
w thesdge uptdll sy b et of

slormations why it would take
Tongey then 5. hours 0 cover 80k uphil

b, mboming (o) et o e ncgligibe, (b)
aresistive force of 040KN acts on the caravan,

7 Acar has a masimam output power of 20kW and

dissipative forces, (b)  constant resistance of
LOKN opposing its motion.

Exercise 6.5:
Examination Questions

(Assumeg = 10ms except where stated.)
1 A force of 0.35KN is needed 10 move a vehicle of

030k long he o
2 A heay sledge s pulled across snowfields, The
diagram shows the direction of the force F exerted
o the e, Once e sede is moring, te
rage horizontal force needed to keep it moving
ey peed ver 1o sround s 00N

(o

(@) Caleulate the force F 0 produce a
Horisontal componentof oo o e siedge.

(b) (i) Explain why the work done in pulling the
sledge cans Jeulated by
muhx)-lymg F by the distance the sledge

@ Cakulte he work  done in pulln the
sledge @ distance o lovel

Eolutae the sverage power wsed 10 ul
the sledge 8.0k h

\QA, 2001]
3 Partof  bobled run is shown in Fig 66
A
wsn
Fig.68

“The point A on thetrack is a1 height of 85m above
‘point B. From B onwards,the run i horizontal. The

led,of mass 250 kg starts from restat A It then
slides down the slope to B and beyond.

(6 Acmming 50 esrgy b o e et
Sides down the slope, calculate the speed with
hich the shd s raeliag 3 s polat B.

(b) At the brakes on the bobsled are applied to
give @ constant retarding force. The sled

the horizontal part of the run. Calculate the
magmludc o e et produced
the brakes.

© Cakulate the work done in siopping the
bobled.

(0) 4 te bl pascs oint B it poscscs

further along

1he . et aery B 21, Ao o

his loss of Kinetic energy in tems of the
princple of conservation of energy.

[CcEA 2000)

4 “The disgram shows part of a roller cosster rde. In

practice, friction and air resistance wil have a
significan effect on the motion of the vehicie, but
you should ignore them throughout this question.

Tiom)

%
“The vehicl starts from rest at A and is hauled up.

a motor. It takes 1505 to reach B, at
which point its speed is o Complete the
bax in the diagram below, which expresses the
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Vet vk donn
by moter

(a) The mass of the vehick and the passengersis
ke Calculate

(i) the useful work done by the motor.
(i) the power output of the motor.
At point B the motor is swiched off and the
vehicle moves under gravity for the rest of
the ide.
Dexrbe the cerall ey convenion which
occurs as it raves from B to

(b) Cal

7 A sedge of mass 0.20 x 10' kg st from st at
the top of a hill and slides down the hill without
y dofing v being appi By et i has
fallen through a vertical height of SOm it has
acquired a speed of 20ms". Calculate the cnergy
dissipated by fictional forces in this time.
8 Twin engine aircraft use kess fuel than those with
four_engines. Recent_ improvements in engine

aircraft powered by two R-\nmm Tmll
engines demonstrated its
non-stop round the world. m.m., T mwn T

used 1.7 x 10° litres of aviation fuel.
Each lire of fuel releases 38MJ when combined
with axygen in the
(3) Calculate the total amount of energy released
during the fight.
(®) The lliyn lsmod 47 bours. Ccnie the
engin

fewer

© On another_occasion
hice; hence s total mass

e [t secd i aguin

relghi st . Sute i o
all you woul
from your previous answer.

there are

ld expect the speed at C to pe
[Edexcel 2001]

Fig.67 Diagram for Questions

Fig, 6.7 shows two blocks A and B connected by a
light inextensible cord passing over a frictionless
pulley. Block A starts from rest and moves up the.
smooth plane which is inclined at 30° 1o the
horizontal. Calculate, at the moment that A has
‘moved 4.0m along the p

(a) the total kinetic energy of the system;

(b) the specd of the blocks A and B.

6 A ball of mass 0.2kg is projected horizontally from
the top of 2 wall 5.0m above ground level at a
tpemdof 60ms . st br 1 s thegrocd
a speed of 10ms™". Calculate how much

nug/ has been dissipated as it fell through the

© e dnqnme Soered by e st vas
41000km. Caleulate the  sirerafts ave
specd.

(d) The masimum theust of each engine is 700KN.
Multiply the total maximum thrust by the
average speed and commen on your answer.

[Edexcel 2000]
9 (3) The movement of sea-wter through turbines
in 4 narrow harbour cnirance sed to

water level in the harbour fals by 5.0m.
9 Caeuas for the -hour perio, the
‘gravitational potential energy lost by the
water leaving the harbour. The density of
water is 1080kgm™
@ The gencrating sstem converts this

clectrical power generated.

A small tidal power scheme and a large
‘turbines can be buill

Explain two achantages of
choosing the tdal scheme option.
[OCR 2001]

10 (3) A wind turbine has blades of tota effective
area 55m° ad-on wind of

speed 10ms~. The
12kgm.

density of air s
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() Calculate the volume of air sriking the
every sccond, and hence
that about 650kg of ar srikes the blades
second.

(i) Calculate the total Kinetic energy of the
air arriving at the blades every second.
The wind turbine can comvert only 405
of this Kinctic encrgy into_clectrical
oo, e the cecial pover

output of the wind tu

(b) A town with an electrical power requirement of
needs. e

output from a smalloil-fred generating
Vation s about 100MW; the uscll power
output of a sngle turbine i 20KW.
Discuss the advantages and dischantages of
these types of power supply.  [AQA 2001]
1A o mas S0k complces .2 o il
ing a change of height of 900m.

(@ Takes 605 for the bict o o rom Ato

Calculate the power which
Gveredty e o CCEA, 001
13 A cyclistis ycling with a constant velociy along a
orizotal rad 1 shownnhe dingun e
st and bicyc should be regarded as 4 single
bjcctoftotal mass 70 kg throughou this question.

“The arrow, abelled R,

the resistive forces acting on the cyclist and
bl D abelled arows. on the dagram

hove 10 ndicae the magninide an

o ot e o g o s o

resents the direction of

@ G e hiker's
body must produce the energy required for
the change in height. Assume that the body
has an overall efficiency of 20%.

(b) In addition, walking causes the hiker 10 use
energy at an average rate of 230W.,

Est nergy requirement for the
whole expedition. [OCR 2001]
12 (3) () (1) Define the term work as used in
Physics.

(@) Give theunit o wrk intems ofthe

@
with a constant velocty of 36m s producing
a forvard force of 40N. Caleulte the work
done against the resstive forces eac

(®) An advertiemen ggests that
et pones i (o e o)l
make sure
e g The s led TATW “The

@) () Detne o
(@) Give e untofpover n terms o the
Sl base units kg, m and s.
© fn ot of mum 15k o puled up o
fictionless slope at a steady speed by
ecrc moor, The siope makes an ange of
25" with the horizontal, as shown in Fig 6.8.

o
=
Fig.6.8

e distance along the slope between the
pomuAnndlhsSﬂm

@ te the work done in moving the
ubgm rom A0 B.

Ui e aelaon 1o dece wheher
his claim i vali

(©) 10 preferbe fr e sielow st the ol

Explain the meaning of the

Cord i nd i i e el

[Edexcel 5.H 2001]

=B

F19.69 Diagram or Gueston 14
A lorry of mass of mass 2.4 x 10" kg climbs a hill
of incline 1 in 10, 3 shown in Fig 69, at @
constant speed of 8.0ms . If the power of the
oy’ engine is 24 x 10'W, calculte

(3) the driving force exerted by the engine
(b) the frctional resistance to the lorry's motion.
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15 The disgram shows a car travellng at a constant
velociy along a horizontal road.

@ () Do s el arons n he diagram
resenting the forces acting on the car.
(& Refrin 1 Newiow's Lavs f moton
explain why the car is trvelling at
tant velocity.

(el ]l ones
18KW and is travelling at a constant velocity
of mm" Show hat the ol resistie foroe
acting is 1800/

© The toul reive fore comiss of two

output of

force of air resistance, which is proportional
1o the square of the car's speed.

Caleulate
(i) the force of air resistance when the car is

maintain @ constant
Zoms on a Roronal rod,
a0 2001)
16 (Assume g = 9.8ms ™ for this queston)
(8) Stte the Principl of Conservtion of Energy.

i) m: effective output power of the car
ired t speed of

6 fo Mo chenie, waer s comeped
through a long pipeline from the reservoir to
the generator. In passing through the
pipeline, the water descends a vertical height
of 80m. The gencrator produces 12MW of
‘power. The overall effciency of the scheme is

@ Eaphm what is meant by overall

i) Shw o the mass of e ek i the
nerator in one second
(i) T he elficency of the !:nznm{ fridn
845%, calculate
10} m v of hevatersescin e

an u.g spetd wuh e e wnie

@ Awmlll‘ e ST
there is no change in the level of the

(1) calculate the power loss in the pipe.
(1) Hence estimate for the
average force with which the pi

resists the flow of water. Expl:
your reasonit
€ () Whatis the iy of e i in
comeying the

1y from the reservoir
o the enertor?

(i) Show how the efficency of he pipeline
and that o he gencrator are conssten
with an overalefficency of

[WIEC 2000]
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Linear momentum

Momentum

‘The (linear) momentum of a body is defined by

Momentum =Mass X Velocity an

Example 1

Abody A of mas S kg moves o the rightwith avlociy
of 4ms™ A of mass 3kg moves to the left with a.
velocity of $ms . Calculate (1) the momentum of A,
() the momentum of B, () the total momentum of A
andB.

Method
‘We use Equation 7.1
() Momentum of A = Mass x Velocity
=5x4=+20kgms™
and hence momentum, are vector
‘We assumed in part (3) that motion to
The ight s posite in sign. So moton 1 the el

(b) Velocity
quan

(o (1o monenum)

-
()
(o)
2024~ —4kgms '
-

(8) Wkgms™, (b) !

“2kgma, (@ -dkgme
Exercise 7.1

1 A body bas a mass of 25kg. Calculate (3) its
momentum when it has a velocity of 30ms R
velocity when it has a momentum of 10.0kgm

2 Anob Anasmmzxgmnmmmnkmx
Sms. An object B has mass 4kg and moves to

the right at 25ms”'. Calculate (a) the momentum

of A, (b) the momentum of B, (¢) the total
momentum of A and B.

Conservation of
momentum

§ Aner cotision

r—

Fig. 7.1 Conservaton of inear momentum

Provided that no extermal forces (such as friction)
are acting, then, when bodies collide, the total
momentum before collision is the same as that
after collision. With reference 10 Fig. 7.1, this means

gy s = g+ v @2)

Example 2

20kg object moving with a velocity of 80ms ™’
colds wilh a 4.0kg objct moving wilha velocky of
$0me" o e S 1 e w0 S o
{opsther on impact cakulate their common vlociy
s ey e iily g 0 18 =4
iection, (b in opposite dircton:

Method
() Fig 728 shows the
impact. Since v, = vz
s

son before and ater
' Equation 73 ghes
= m +may

so
2x84+4x5=60
36

v=% o 6oms



e [

PP T 4 e e
T

(o) Ovfects movig i same arection

—
m,,,
l”'ﬂ mEy

5

2)Obiects moving nopposis srsctns
FIg.72  Diagram for Examples 2and 3

©) Fi 720 it e huaion. Asin Empe 1
mass now has a negative velocity, so
"8 et b common i

2x8-4x5=6

Voot ogTms?
H m

Answer

@ 60ms™, (b) ~067ms".

Note: The negative value o' mcans that the combined

s move 10 h e e colon. This s ecuse
‘momentum of he 4kg mass s asger than that of

e g S e e ot e and

o momenta are abou

commn elociy afier imy

lre o of e i K ey comered

tother forms o

Exercise 7.2

1 A truck of mass 10 tonne moving at 40ms”"
catches up and collides with & truck of mass 20
tonne moving at 30ms~ in the same direction.
The trucks become coupled toether. Cakeulate
their common velocity.

(1tonne = 1000k )

epeat Question 1 but rucks

i e some e and nppmlc rections.

3 Apledtherof e 300Ky g 20ous- s
a staionary stake of mass 20kg. If the
off

Collisions and energy

Momentum is conserved in a collision. Total
energy is also conserved but kinetic energy might
not be. In general some kinetic cnergy will be
converted o other forms (¢.g. sound, work done
during plastic deformation)

Aninelastic collsion is one in which kinetic

energy is not conserved.

An elastic collision is one in which kinetic

served.
inclasic collision s one in
which the objects stick together on impact.

Example 3

Calelate the KE comerted t0 other forms drin the
collisions in (a) and (b) of Example 2.

Method

Refe to Figs 7.2 and b which show the Kinetic energy
before and atercolision.
(8) Before collsion, total KE = 64 + 50 =
Aftercoliion, since v

14y

After collsion,since v
Total KE = § 6 x (~067)" = 131
KE comverted = 114~ 13 = 1127]

Answer

(@ 63, (o) 13

Example 4

A 2.0kg object moving with v:k)aty (\Dmx g ml!nlrs

i stonay et o mas 10k, Asumig
Petat i e e ity of

b abj«,i i the collision.

Method
omel g W, n=?

Sy E )
5
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Fig. 7.3 shows the situation before and afier collsion
We it v 0 v, the il veloctis of e 21g
ets respectively. This means we need two

Kinetic energy s also conserved. So

At ot = Lyt Lt
[ T IPIEIS
T PERL S PERT RS SYP

@ro=vis a4

Note tha we hme v imubons equaos (e

Comptr 2) 30 we can sbciue for v; o
Equaton 73 into This gives
Vi =20ms andhencery *!Umi"(z:(‘hapl(vzj

Answer
The velocities are 20ms™" and 80ms ™' in the original
direction. Note the following values of KE:

myhas3e),  m:has0)
mybasdl, mihas32)
S0 the total KE remains unchanged at 361 before and
after collision.

Energy interchange s via the clastic spring which
Stores energy on compression during impact. This
potential energy is converted to KE when the
objects separate.

Exercise 7.3

Cakae the KE comered o other o during

the collision in Question 1 Exer

Cakate the KE comened to ot forms during
the collision in Question 2 Exercise 7.

~

w

A 2.0kg object moving with a velociy of 80ms

Explosions

When an object explodes it does 50 as a result of
some intermal force. Thus the total momentum of
the separate parts the same as that of the
original body. This s often zero,

Example 5

Fig. 7.4 Information for Example 5
Fig T4 shows o ol & B iy o e
scparated by a compress ‘The spring is now
e an the 3 rollo s i ey of
10ms™! o the right. Cakculte (a) the velocity of the
20kg rolky, (b) thetotal KE ofthe trlleys.

Neglect the mass of the spring and any friction forces.

Method

(@ Both trolleys are
s

inidially at rest o their
momentum is zero. So

0= mava + s

where mp =30, vy = 10, mg
required. So

0 and vy is

0= 30,420
or vg=-15ms

“The negative sign indicates that trolley B moves to
the left

(b) Total KE is the sum of the separate KE of each
trolly. So

Total KE = {mara’ + myn
Lx3xPadx2x (15

375

Note that the KE i of course positive in cach case.
initial KE is zero, and the final KE comes
from the potential cnergy stored in the

collides with a
of 60ms™ along the ion, 1t the
collision s_completely inclastic, calculate  the
decrease in KE during collision.

Answer
(@) 15ms”! o the left, (b) 380,
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Exercise 7.4

Note that the unit N is the same as kgms .

A ghell of mus Lokg & ired rom a un with 2

velocity B g that the gun is

e 10 move, calculte e e elociy  # b
of 1000ke.

A sace sl has ol mas S0k, A poron
at a velocity of 10ms .
Colclae e resol veocy of the remaining
porion.Neglect e il ety of the sl
A radioactive nucleus of mass 235 unts travelling
400kms™! disintegrates into a nucleus of mass
95 units and a nucleus of mass 140 units. If the
nucleus of mass 95 units travels backwards at
200kms~!, what is the velocity of the nucleus of
mass 140 units?

M

and force

(b) Chan
We have m = 0020, u

and require v

@ 200kgms™,
Example 7

®) 100ms"

T
Timars

time £(5) so tha the vlocity of the body changes
(ms " v (ms™7), then provided SI

units are used:
_ (Rate of change) _ (my —mu)
= (ot o)™ 0
as)
Rearranging Equation 7.5 gives

Fxt=

—mu a.

The product F x 1 is called the impulse of the
force. It cquals the change of momentum of the
body.

Example 6

A atonary gl bl s i with b whic xets an
average force 00255, Caleulate
(o th change inmonenm, (4 (e oty acqired
by the bal i it has a mass of 0,020k

Method

(3) Change of momentum

Fig.75 Disge el

Fig. 7.5 shows how the force acting on a body varies
with time. The increase in momentum of the body,
measured in Ns, as a result of this force acting for
four seconds is
A4 B2 C12 D60 E 30
Method
From equation (7.6):
Change of momentum = Impulse = F x 1
In this case since force F is changing with time then
F X0 comuponds o the are under the gaph ¥
. Since F versus ¢ is a straight line passing
rough he oo ten
area = }base x height =
-u

Pxaxn

Answer
B

Example 8

gebeard o of » cmal bt s o ropeos
i ens ok s e o e
arca 0.030m’ at a specd of 80ms”!
boat s held at ret caleulate:

(@) the rate (in kes™) at which water is propelied
backwards

eross-sectio
" Assuming e

(®) the rate of momentum of the water
(assuming it was originaly at rest)



(€) the force exerted by the motor on the boat.

Assume the density of water = 10 x 10 kgar

Method
() Volume of water sent back per second = arca of
cross-section x speed

=003 x80
024ms!
s of e s bock pr scund = olme
per sccond x
o2 t0x i
02410 kgs™!
(b) Using equation (7.5) and assuming tht the water
was originally a rest:
Rate of change of momentum = 2 (v ~ )
=020x10' x50
= 1920kgm:
020 10%v

since mit

(©) From cquation (75):
Force = rae of change of momentum
= 19208
The foree ceried by the s, v he propetior

on the boat arses s 4 reaction to the &
ot e Change he oo o he e

Answer

@ 026x 10kes™, () 19 10'kgms™,

© 198N,

Note that the units kgms™ and N are effectvely the
same.

1

At bl o mat 0024k s W i 3 ke

d acquires a velociy of s iniial
ity e, 1 theine of comact wilh s
racket head s 00405, cakulate the average force
excrted on the ball.

A machine gun fires bullets at a rate of 360 per
i, The bulcs hav o mas of 20g sod 2
spe

00m s late the average force

exerted by the gun on the person holding it

Fig.7.6 Graph for Queston3
Fig. 7.6 shows how the force acting on

changes wih time. Coloahtc the change. fn
‘momentum of the body.

Exercise 7.6:
Examination questions

1 Abullerof mas LS s red ozl rom g
ind becomes.

with a velocity of 250ms™. It

Cnbedded m, + blck of wood o mas 300
vhihufecly mpended by longsings s hov
i Fig. 7.7, Al resstance i to be neglected.

7

Caleulate g the
‘momentum of the bullet as it leaves the

Calculate the magnitude of the initial
velocity of the wooden block and bullet

to calculate the
Kinetic energy of the wooden block and
embedded bullet immediately after the
impact.

(i) Hence calculate the maximum  height
above the cquilibrium position 10 which
the wooden block, with the embedded
bullel, rises afier impact (assume

=10ms™).

[CCEA 2000, part]
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-

kg ¢

aakgme

n, 2] m.gmwmmz

1d B, are about (o collde bead on;
xlxelr vam:s o ncar momentum re o1 showns
Fig. 78. Afterthe collision the two trucks separate
and move nw:y from cach other, at which time
truck .

AN B3N CH D@

(b) Wi 1 the statements, A o D, about
he ton e ey of e trolleys
immediatel after the collision s correct,

A The tota Kinctic energy i zero.
B The total kinic energy i greater than zero

[OCR Nutf 2001]

Caleulate:
(4) the original combined momentum of the trucks

(b) the momentum of truck B afer collision and
state its direction of travel.

£
s

Fig.7.9 Disgram for Question 3

Two partices, S of mass 30z and T of mass 40,

both el o e of S I diction

ight angles as shown in Fig. 7.9, The two

O i i toper: Caile h sped

afer impact.

A train of mass .0 ¢ 10°kg acelerates uniformly
from rest on a straight hoizontal track to  specd
of 20ms ™" in 45s.

(8) Caleulate the force causing this acseleration.

%) Dusog » vequet shuntig operaion tha
e, vl , et wilh 8
stationary * 10 ke

Immediately after the collsion, Prgierdid
mor togethes s 3 single wi. Fres othes
than those ger the impact
neglected. Calcu

() the speed of the combined teains after the

impact;
(i) the kinetic encry lost n the colsion.
[OCR 2000]
A supermarks olky of mass 10kg unels at
2ms" towards a stationary troley of mass 20
“The two troles collide, lnk and move of together.
(@) Which one of A 10 D below is the toul
momentum of the two rolleys, in kgms,
afier they have linked?

)
andthe princpic of consenation of enery. Give
e exampl ofthe use of ach princip

as5 M and speed v colldes

stationary bl ofdifferent mass.

(i) After the collsion, he ist ball s stationary

10%

that the mass ofthe second ballis 10M9.
) 1 another clfion betver thetuo bl
from

itions, ro.
it oy s . Decrmie he T
velocities of the balls.

(9) A rubber ball is dropped on to flat ground

(ssumeg = 10ms
[Hint: 15 +x7 45" = (1 -x)
[OCR Spec 2000]

@ () St the prinile of coneration of

(b) Describe and explain

what happens when &
moviog parete coldes chstay with 8
stationary particl of equal m;

©) Figure 7.10 shows an astronaut undertaking a
spaces ronaut s tetbered by @
Tope 0 3 spacceraft of mass 4.0 10 kg. The
Spacecraft s moving a constat vlocry,

Fig.7.10



a PHYSICS

The stroautandsaces e ol s

change in velocity of the
oot aher p\nhmg ot 150my
) u sange of the

iy
(i) The astronaut pushes for 0605 in
achicving this speed. Calculate  the
average power developed by the
astronaut. Neglect the change in motion
of the spaceraft.
The rope eventwally becomes taut
Suggest what would happen next.
[AQA 2000}
8 A stationary Uranium nucleus of mass 238 units
lecays into a Thorium nucleus of mass 234 units
s an b partie of mas 4 units withsperd
i . Calculate the recol speed of the
i

A satonay stomic nuces dlsgries o 0
‘mass 4 units and a daughter nucleus
e 54 Clette e

. -particle_
KE of davghter nucieus

10 (8 Cnlisos can bo e 15 s or
s Sae i s meant by an inclastic
ol

(b) A ball of mass 0.12kg strikes a st
ke bt with s of 18+ The bl

along tsoriginal path with a speed of 15ms-".
Caleulate

() the momentum of the ball before the

(i) the momentum of the bl after the
collision,
(i) the total change of momentum of the ball,
() the_average force acting o the ball
ring comact it e o,
(9 the Kinetc energy lost by the bal as a
el of he colison, [AOA 201}
"o
5

Fig.7.11 Graph for Question 11

“The graph of Fig. 7.11 shows the variation of force
F acting on a body over a time 1

Caleulate the change in momentum of the body
(@) afier 25 ® afier ds.
12 A tennis ball, moving horizontall at a high speed,
strikes a vertical wall and rebounds from it
(a) Describe the energy translers which occur
during the impact of the ball with the wall
(6) ‘The graph shaows how the horizontal push f the
‘wall on the tennisbal varies during the impact.

(@) What is represened by the area under

the gra
@ Bt lhc o o i araand ence
sange of velocity of a tennis
o 575 o meken s
impact
I the Kinctic encrgy of the tennis ballis
unchanged by this impact, with what
specd did it srike the wall?
[Edexcel 2001]
13 (@) () What is the relationship between force
and momentum a5 expressed by Newton's
second law?

(i) State Newton's third law:

An stronaut s 1 g (0 move around
i space. The gun fires gas from a nozzle of
area 150mm’ at a speed of 210ms . The

demy of he g s 00 * and the
mass of the astronaut and associated
Cauipment is 100K,

Caleulate:

D the mam e gas g e un i one

oyl zoserion o the st
e when saring from
[WIEC 2000
14 (3) A bullet of mass 50g takes 20ms to
accelerate uniformly from rest along. the
0.60m length of a ifle barrel



0 Calate the e wil i e bulet

i) m Py it the shoderof
firing it Calcul
megomde of the ecol

) A jet of wate is directed at  vertical,rigid

the water i paralel to the wall. Caleulate the
magnitude of the force on the wall due (o the
jet.

of water = 1000 kgm "
(CCEA 2001)

5 A shp s poweed by aier e propuon i
driven by a diesel engine. When the ship is
Saonary and the engn s runio ot ar power

‘Take the density of water 10 be 1050 kgm ™.
(@) Write down an cxpression for the mass of
water flowing in the jet in one second.
8) The Kincic coergy ghen o the et in one
813X 10 Calaie

e magnitude of

the momentum w«u by the water in

thejetin

[t ——

by the et on th

(©) State two reasons why the output power of the
diesel engine must be  greater than
L5 1P W. {oCR 2001]

16/ Expres the St of o i e o e

(6) The diameter of the rotor of a wind turbine is
36m. The tes about a_ horizontal

e as shown i g 712

Vot

©

@

©

e

Fg.7.12
The axis points directly into a wind which is
blowing at 15ms~'. Assume that the air
emenges from the rotor at a mean axial speed

Take the density of air to be

Show that:

O themam o s mmx ingne second

the  circ by the s
T e e

(i) the Kinetic encrgy Jost by this air is
51 10°0,

Caleculate the horizontl force exerted by the
air on the rotor in a direction parallel to its
axis of otation.

S why e spporing e o e wind
turbine must be ver

The turbine comerts the kinetic cnergy lost by

‘would be needed 1o provide the output of a
conventional S00MW power station.
[OCR 2001]
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Circular motion

Uniform circular motion

Fig.8.1  Object moving n uniform circular motion
\ows  body moving with uniform speed
t a fiwed distance from a fo t s in
uniform circular motion

The body has a constant angular velocity
defined by:

angular displacement (radians)
@ Ttime taken (5
Linear and angular
motion

In Fig. 8.1 an object moves with uniform speed v
{ms™") around the circumference of a circle,
centre O. The rotating radius, of Tength 7 (m),
has angular velocity o (rad s™') such that

v=rw ®1)

1T s the time for one revolution then, since time
= distance + speed:

since v = ro.

62

Example 1

A pulley wheel rotates at 300 rev min~". Calculate (a)
s angular velocity in rad 5™, (b) the linear speed of a

point on the rim if the pulley has 2 radivs of 150mm,
(@) the time for one revoluion.

Method

(@) 300 rev min™ =320 ey 1 = 5,00 rev s (orHz)

(]
“The frequency f of rotation i thus 5.00 Hz. Now in
one revolution the radius rotates throu
T e .mm velocity o of the rotating radius
s givr

® z"«,zms,mm.as"
® U Equion 81, i whih 0= 10s and
= 0.150m. Thus
=015 % 102

=150z ms!
(@) Since £ =500Hz then cach revolution takes
1020
55 = 0200

T

2005,
Note we could have used Equation 8.2

Answer
(@314 mads !, )4T1ms !, () 02005,

Exercise 8.1

1 The wmiable on a record player rotates at
45 rev min ", Calculate () its angula velocity
in rad s, () the fincar speed of a_point
Lacm from the cenire, (c) the time for one
revolution.

A car moves round o circular track of radius
m ol s consant specd of 120kmh.

10k
Callulate its angalar velocity in rad s .




CIRCULAR MOTION

Centripetal acceleration
and force

“The obiect in Fig. 8.1 has uniform specd, but ts

®3)

is

An rd force is needed to provide th
coderaion. For 2 body of mass m the
‘magnitude of the ‘centripetal’ orce F is given by

:
F=mre' =m>- ®4
“This force can be provided, for example, by the
tension in a string, by gravitational or electrostatic
attraction, o by friction.

Example 2

An objoct of mass 030kg s attached to the cnd of a

Suring and s supported on'a smooth horizontalsurface

“The object moves in a horizontal circle of radius 0.50m

with a constant speed of 2.0ms™'. Cakulate (a) the
nripeal accleraton, (b) thetenson n the sting.

Method

(@) Use Equation 83 with ¥ =20 and r

centripetal cceleraton s given by

150, The

(b) Use Equation 84 with m =030, v=20 and
r=050.50

0352

Method
uation 8.4 with m = 40, v = 5.0 and r = 20
T centripetal force Fis given by

Thus o et ivar oroeof SON mus ac on the bty
juring its rotation. In Fig. 82a the body is at the
oo of the el S
T -mg =50
=504 mg =50+ 40 = 0N

This is the maximum tension i the string.

Tonsien T,

- 410 40N
(@) Body a botom of circle

mg - S0
. Tenson,

®)Body attop ot circe
Fig.82Forces acting on a body moving in a vertical
cidle

Atthe top of the vertical cicle, in Fig. .2b,
Toimg=50
Ty =50 mg = 50~ 40

G o5 2N ~ 1N
e
Answer Answer
(@)80ms7, (b) 24N, Masimum tension = 90N,
Minimum tension = 10N,
Example 3
An objec of mass 40kg s whired round n a verical  EXAMPlE 4
ar

adius 20m with 2 speed of S0m:

the maximum and minimum tension i the

string connecting the objeet o the centre of the circl.
i 10ms”.

circle of
Cal

car if ts road wheels are (o stay in contact with the
brids )

6



FOR A-LEVEL PHY:

Method
= Reaction rom ground

inms™!, and state where the object will be when
the string breaks.

Assume g = 10ms”>

o mase |

Fig.83 Forces acting ona car
Fig. 83 shows the forces acting on the car when its
wheels arc in contact with the bridge. A ne inward
Jorce equal to my? r must always exist. So

mg-R=m

Asvincreases, so R must decrease, since mgis constant.
In the limiting case, when the wheels are just about to
leave the ground, R = 0,50

g m
The mass . camcls ot and i not equie. o
i s s gen by
-
Wetaver = 5 andg = 10,50
Vg = V450 =212

Answer
The maximum speed is 21 ms "

Exercise 8.2

A cor of mass L0 x 10°kg i moving at 30ms™
srond s end o s U0k on 3 oot
rack What ceniripeal fore i reqired o keep
he ot mingsround he end. and where Gons
his force come from?

2 An object of mass 60kg is whiled round in a
ircle of radius 20m with a speed of

Caleulate the maximum and minimum

teion n th sing connesing the obpst 10 te

contre of the &

I the siring breaks when the tension in it exceeds.

360N, calculate the maximum speed of rotation,

A
my”, Gl the minimum rais of e
ekl i the ca rond vhock we o renaln
W happens
ke & len a1 g vahc? Assome
= 10m!

The conical pendulum

Herssmalciclo
fadar cone O

Fig. 84 The conical pendulum

Fig. 8.4 shows the forces acting on  conical

pendulum in which the bob sweeps out a

orzonl cirde, cetre O and radis 1, with
r speed v, Resolving forces on the mass

{vertically) T s 0= mg. ®5)

(horkzontally) T sin 0= mé 36

Example 5

ical pendulum consists of a small
«mg niached 0 10 oetenibe §In||g o I:ng(h

T D, o which e coe vemr:llv belw
ihe point of mspenson Calte (4
speed of the bob in ms c perod of otaion
,© e Tension i string. Assume




Method

os0m

o
Fig.85  Diagram for Example s

re given m = 020, r = 0.40,g = 10. Al we are
given O since, from Fig. 8.5,

sin 0 = (48 =050
0=30
(a) To find » divide Equation 8.6 by §.5 to give

04 10x0577

B _ Cireumference of circle
) periodictime 7 = Citetltence o

1655
(©) Rearrunging Equation 8.5 gives
mg_02x10
T cos 30

=23IN
Answer
@ 15ms™, () 175, (23N,

Exercise 8.3

1 A conical pendulum consists of a bob of mass
0301 atached to s ing of lngh 10m. The
bk o i & bt e ch o e
gl the siring makes with the serieal & 30

Calculate (a) the period of the mmmn. ) the

tension in the string. Assume g = 10ms

Exercise 8.4:
Examination questions
(Assume,g = 10ms " except where stated.)

1 The Earth roates about a vertical axis every
86 10°s. For a body on the equator calclate:
(@) its angular velocity
(b) it inear speed
(@) its acoeleration duc to the rotation of the

carti's axs.
Assume the Earth has radius 6.4 x 10°m.
2 (0 A body s atachedto pisc of sing and
whirled in a horizontal cicle of radius r at a
otk mguer ek

0 - Defio angolr veocy.
2 s st angular velocity.
(i) Wrte down. the equation relating ihe

Imuu \pud + of the body and its angular
(6) A fan tarns at 900 revolutions per minate.

Gi
in terms of the SI unit you quoted in

@0z
(@ The ditane rom the sxis of roaionof
e fm o th t of o o the bidss i
Fin

.—\mnl

Anaicraft fies with its wings tilted as shown in
Fig 86 in order 10 T in  herizonal itle of
radius . The aircraft has mass 4,00  10'kg and
has & constant speed of 250ms

We 3R 0N

Fig.86

With the sircah hing fn tis S forees.
reraft in the are the

foree P u:lmg e e of 25 15 o e

and the weight V.



CALCULATIONS FOR A-LEVEL PH)

() State the vertical component of P for
horizontal fight.

(b) Calculate P.
(©) Caleulate the p.

acostant angular vy, T magni
the angular velocity is such that the .m..g
Just remains taut when the mass is vertically
above the centre of rotation.

(d) Use Newton's second law (o determine the
sceletion of e st omads e ceaee
icle.

of the.
(€) Calculate the radius r of the path of the
aircraft’s ight. [0CR 2000)

osorg
Fig.87 Diagram for Questiond.
The sinpls pendlam vith 3
I:n!lh ot 1.5 unda mn of mass 0.50kg. Wi

west point P it has & ipccd
o2 ma" Calcune the emion  the sing o1
the bob passes mmwgh point P.

EDN and the bob

() C:
(i) Find the tension in the string when the
mass is vertically below the centre of
rotation. ICCEA 2001]

7 A metal sphere of mass M is attached to one end
of a light inextensibe si
© Thepherms whlr\nd jn s ik o vernl
‘constant angular velocity. The radius
St cile i A0 The angement
illustrated in Fig. 85,

Fig.88
During the rotation of the sphere, the tension
T n e sringvaris with tie 13 shovn in
s

p
s mas 025k, Find the et value fo the
tension in the string when the pendulum is sct in

o ahre i he e e s e

IWIEC spec 2000]

6 (0) A girl of mass ke sis at the nlgc of a

ndabout (mery-goound) of radius 20m.

Aboy turns the roundabout ingis dge

and i ound o hiat  pin o on e s
‘moves with  steady spec

() Calculate the angalar velocity of the

Fig.89

On Fig. 89 A B C and D arc instants of time.

comespanding (o cean pilson the gaph

of T agai

® On Fig 85, mark the psiions of the

sphere comesponding o

s A B a1 D, Tabel tho
points &, b, ¢ and d respectively.

Toudsbout.
@

e mum 10 prevent the girl from
g off e rourtbot
imum el fore st e
,m can provide is 180N, ke
the gil side off, the bwy o fater At
what speed must he make a point on the
edge of the roundabout move in order to
make the girl side off?
(b) A mass of 20ks, atached 10 a swing, is
whirled in a vertical circle of radius 0.40m at

(i) Us
Fig. 89 10 show that the mass of the
here i 030k Take g = 10ms ™.
(i) Calculate the linear spoed of the sphere
as it moves round the circular path.
(i) Calculte the angular velocity of the
string.

(b) The sphere is now whirled in a circle in
horizontal plane. The length L of the sring is
gradually increased, but the lincar speed
the sphere is kept constant. On & copy of



CIRCULAR MOTION.

Fig 810, ke pogh o show the s
in the xlm\gwlh its lengeh L.

Fig-810 (CCEA 2000)

8 @) A gy car cromes o gt hp bocked

the car i to remain in contact with the
while ing the brid

(b) Later, the car travels along a banked curve on

a borizontal rozd.
Explain, withou cal

() why banking the mad helps the car o
travel round the

@y there e spe at whichthe

r experiences no sideways. frictional

fore & panc paralle 1o the oad

surface. [OCR 2000]

9 A car of mass 1000kg travels over a humpback

bridge of radius of cuvature SOm at a constant
1. Calculate the magnitude and
direction of the force exerted by the car on the
road when op of the bridge. Assume

10 (3) What s a centripetal force?
ibe and explain one example where such
a force exsts.
(b) A motor car travels with uniform speed along.
a straigh, level road. The diameter of each
1 of the car is S60mm, and the angalar
velocity of the wheel sbout the axle is

) What s the angular elocity of a point on
the el midvay bwen the 5 nd
outer edge of the tyre

(5 Showht th secd e caris bt 60

ilometres per hour
(©) s the carin () proceds s constat
speed of s per_hour,
e Y ke . The b ey
be considered o be the are of a circle in a
vertcal plane. The car travels over the

g, st withot g conac with the

c.kmm the radius of curvature of the

(@0 11 e were trvling with » pesd

slghtly greater than 60 res per
owr, decee and explin quallmxv:ly
what would happen o the car as. it
crosses the bridge.

@A et blndl,d fan rotates at a constan

from a high value 10 @ value at which the fan
sppeans sty for the [t e, and the
mark on

Nashing luxim,nq 5 e s por tecond.
The radius of each blade of the fan is 150 mm.
Caleulate:

() the rate of rowtion of the fan in

revolutions per minute,
(i) m< Jowlr speed of 3 an bide i

fans per secor
(i) lh& osmeon “peed of the tip of a
i blade in metres per second

@ A me sphere M of o 135kg is

spended from a rigid support by a light
mm', g of Jength 1S0m. The )ph:l( is made to
ith uniform  speed in 4 horizontal

e of o 00, 5 show i Fig .11,

patn ot
ity cc,
s os0m

'
andhorizontal  components of the
tension.



PHYSICS

() One of the components in () effectively
supports the weight of the sphce, ind

nsible
pporing e weh ot e sphere
Hence find the magnitude of the tension

(i) Cale th it specd f e phese
as it moves in the hor
() Caclate th.ime.required or_the
to make one complete revolution
ofis horizontal motion.

11 Oneof the rdes st theme parbas 4 number of
chair ach suspended rom s of s o
e e o+ Fomenort. The b vors
50 that the chairs swing outwards as they move
o n s (e dgam 1 s i
The tramework has radius 4.0m. The chains are
S0mlong.

For safety. the angle 0 of the chains with the
vertical must not go a

“The digram above shows a char swung outwards
s the canopy revolves a the maximum safe rate.
On the diagram draw the forces acting on the
chair. Hene ind 3 vl for the msimum e

i rotati velociy) of the framework.
Show your reasoning ey, (Bdexel -1 200
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Gravitation

Gravitational force

attract each other solely as a result of the
matter they contain. The gravitational force F (N)
between two particles m (kg) and m; (kg) placed
distance r (m) apartis given by

Gm,
,;

F ®n

where G s the ueiversl graviaonal constant
and has value 6.7 x 107 Nim' kg

Example 1
Calclte the graviatona antacion force be

ot of mack 30vs nd 20ke lced it hee
centres S0cm apart,
Method

Wesmeta e b am o rph:m oty
4, for this purpose, as if the int
(p.m-:ks) omed at iheir sentes. We. have
W07,y =30, my =20 and =050,
Fnymnqu ion 9.1

Gy

67107 32
03

16% 107N

Thi i vyl e, To gt an sl (e
one or both of the objects must be very large. Our
weight & th rcat of he graviatons! atricion
foree from the Earth.

Answer

16% 107N,

Example 2

Tuo partice” of mass 020Kkg and 030k are plced
0.1 m spart. A thirdparticieof mass 0050k s placedt
beween them onthelne jinin th first two prticles
Calalate (2 the gravitational foce actingon the third

W el ffcs o th Ex's i whichmake  difence
ofabour03%

particle i it is placed 0050m from the 0.30kg mass.
and (b) where along the line it should be placed for no.
gravitational force to be exerted on i

-0k

m-os0ig b,

——an

Fig.8.1 Soluion to Example 2

Refer 1o Fig. 9.1

(6 Both st and Myttt Using Equation
9.1, we have for mass M, an atiractive force Fy
(iowards M) gen by

67107 02 008
(o

For mass My an attractive force F: (towards Mz)

exiss given by

GMm _ 6710 % 03008
005y’

E

=02 107N
‘Thus the net force F (towards Ms) s given by
FeR-F=35x10"N

(b) Suppose mass m is x from M, and thus (0.15 —x)
from M;. Then

LMy o G
* 015 -]

For no gravitational force 1o act on mass m,
Fy = . Thus

Mm

G,
o et 02

Note that G and m_cancel g i d e
Mcpcndcnl of m. Substituting M, =02 and
T o Easion .2 gves.




ALEVEL PHYSICS

03
0153
Taking square roots and cross multplying gives.
V2 (015 -2) = V3 xx
“This gives x = 0.067m,
Answer
() 34 107N, (b) 0.067m from M, (020kg).

Exercise 9.1

(Assume G = 67 10" N kg )
1 Cilalte the gmiatont
between each

attraction
s mass

foree
kg

placed 1.0m aps

o e Ext 3 o e o s
X0 m and Y10k Find e
o e o e of S st o0
tuc of e Eart (Asure the Fah
e epced by 3 i o i i )
Cormpar i wihth veight of » 5.4 s o1
Gar

w

Two small spheres of mass 40kg and M kg are
placed 80cm apart. If the gravitational force is
210 at 4 point 0¢m from the 4kg mass along
the line between the fwo masses, caleulate the
value of M,

@ “The mass of the Earth is 60 x 10° kg and that of
the moon is 7.4 x 107 kg. If the distance between
thee cenes & 38 ', calcuate at what

the line oining s s s oo

ol fore. Negct the efect of otber

Plants and the su

Gravitational field
strength

The gravitational field strength ¢ (Nkg™) is
defined as the gravitational force acting on unit
mass placed at the point in question. It equals
the acceleration due to gravity g (ms °) at this
point.

Example 3
s o e s 8wl e o s
Gaxit'm 60x1Pkg, fnd the

gravitationsl b senglh g 1 3 ok (@) on the
surface, (b) at height 0.50 times s radius above the
Eanth' surface.

70

Method

() We assume that the Earth can be replaced by a
point mass acting at its centre. Then in Equation

9.1, F = gifm, = L1 M is the mass of the planct,
0

Thisis a general xpre §

We e G =675 00, M=60x10° ana

=64 1

Substitut 93 gives -

in Equat §=
Note: i s the aceeeration due 1 gravy
at the Earth's surfuce.
(b) We now have distance 7, = 1.5r. Equation 93 tells
usg x (distancey’. 1 g, is the new value, then

[ e ——"
& sy
1= 0444 = 436N kg™
Answer
(@) 98Nkg™, (b) 44Nkg""
Example 4
e o gy s Eart's e s
Gl e aesemion o gy ons

s wich e 0 i
Gency (b the s densiy and twe e adis.

Method

cccleration due 1o gravity cquals the gravitational
e arengi s Equation 93 l:lls us that g depends on
mass M and radius 7 of the plan
(o Inthiscas the e f the plwm differs from
. Lt the density of Earth be p and of
e plane e 39 Sioee ot hve he- e
M,

M=gur'y = tmix2
s

for Eanth  for planet

giing =2

o P

o Eqaton 93 we e ha g} 1 for two
yl:ncu of o s the
graviationl ft Swength on ey plancL

since £ = (). Asg =98,
8= x98=156
® m ‘new planet has. minu 2. Let its mass be My
s demsity . therefor



GRAVITATION

My = $n(2)p = 8

g MIF 1 gy is the gravitational field strength
on the pl

B M

T
since M; = 8M. Thus g; = 2 = 19,6,

Answer

@ 156ms7, (b) 196ms™

Exercise 9.2

(Assume G =67 10" N’ kg %)
1 The graviational feld strength on the surface of
the moon is 1.7Nkg'". Assuming that the moon
i 0 o g of_ s 17 0°m.
sl 0 e L (b the
o ks soength 10« 100m s

oy
2 The acceleration due to gravity at the Earth's
i s 930 Calol the ssieaon e
to gravity on 4 planet which has (a) the
Tosk sy i tpo i, () i S reies
oo oo e Loemir ks fmaizlemd
twice the density
3 Ifthe Earth has radius £ and the acceleration duc
10 gravity at its surface is 98ms~, calculate the
it that is
surface of a planet with half
e o ang e s density as 1

Gravitational potential
and escape speed

p—
ps Point mass m
N e
:
<

Fig.92 Gravtational potental at P
Refer to Fig.9.2. The gravitational potential U at
point P duc 10 the gravitational attractive force
of mass M s given by

©4)

The negative sign indicates that work must be
done 10 take a mass from P to infinity (where the
poten 10). U is the work done per k.

Example 5
Assuning that the Earh i a uniform sphere of radivs
64 10°m and mass 60 x 10° kg, caleulte (3) the
potential at ) the Earth's surface and (i) a
ot 60 x 10 m above th Earysrfce, () he work
nein mass from the Eartssurace 03
point 60 x 10°m above it (¢ the work done in taking 3
fom the B’ e 103 i here
e Ear's ratonl el s gl
Method
(3) We use Equation 9.4 in which G = 67 x 107"
and 31 = 6.0 107
i) We have r
potential here,
oM
— 628 107k
00 10 m I
e potenil at 7 Eqaton 94 ghes
v, 0k

64 10°. S0, if Uy i the

675107 60 10°
6410

=574 x

(V) The work requied 1, per kg s the diference in
sravitatonal potental, so
W= s - U, =053 1073

Note: we subtract Uy from U since there s an
increase i gravitational potnial s we move away.
from 0 e require
S0% 0S4« 107 =27 10°1 (We cannot e the
simple form mgh (0 calulate work required, since
& changes appreciably between the two points)

(©) The work required IV, per ke, i given by

= Potential at o — Potential at Earth's
surface

~0- (-628107)

—628107)

Fora 5.0ke mass the work required s
5628107 =314 % 10

Answer

@) 63 103k and ) 572101k,

(6) 275 10'3, (¢) 31 x 107

Example 6

Calculte the minimum speed which a body must have.

10 escape from the moon's gravitational ild,given that

the moon has mass 7.7 10° kg and radius 17 x 10°m.

7



Method

4 t0 take a body of mass m from P to
ity is G/ Supposc the body has speed v at
point P, then it will have just cnough Kinctic cnergy to
escape, provided that

©8)

_ "/’ZGM

We have G=67x107, M=77x10° and
7100,

Substituting into Equation 9.5 gives
4610 ms.

Answer
Escape speed =25 % 10°ms "

Exercise 9.3

Sped

R

Ottt mass
Fig.93 Asatolite n orbit

The centripetal acceleration and force (see
Chapter 8) is provided by gravitational
aueation.Fig 0.3 shows a sl of mas i in

ircular orbit of radius r around an object of
s M. Suppe s the pecd of rtaion nd T
s the period of rotation. The centripetal force F.
required is:

®4)

(Assume G = 6.7 % 10 Nar' kg ™)
1 adona poentl irecebeveen w0
30 10° kg ™. Caleulate the work done
g e of S0k e te o poios:
as mass 7.7 10%kg and radivs
L7:10°m. Cakulte (a) the  gravitational
poeral s st 14 ) e wok el
etely remove a 1.5
rom it surace o outer space: Negleet the
effect of the Earth, planets, sun e
A\ plant s s 50 107 and mean densiy
305 10'kgm . Calulate the escape speed
bodies on its surace

-

A newtron star has radius 10km and mass
25 10%ke A meteorite is drawn into its
grevikatonl . Cakelt thespcd with vich
it will su . Neglect the
inital speca el

Satellites and orbits

Satellites are objects which arc in orbit around a

2 the moon s satelite of the Earh,

7

F=Sn o
Also, in ), we have.
7=t 52

three equations are used 1o solve problems
on satellites in orbit.

Equating (8.4) and (9.1) gives

My ©6)

Substituting v* = 4z*r/T* from Equation (8.2)
gives

07

Since G and M are constant then 77 o r* — thisis
Kepler's 3rd law and can be appllu! to any
satellte in arbit around a massive bo

Ina (‘tmmlimmry orbit a satellite orbits a planet
and stays directly above the same point on the
Pianet (m Example 7).




GRAVITATION

Example 7

Exercise 9.4

Dours e s o communicatin prposcssice ey
appear stationary above a
e the eigh of such 4 sailie sbove the

arth M = 60 10 ke.
nd the radiusof the Earth

c—mxm“Nmk
R=64x10"m,
Method

‘We use Equation 9.7 in which T = 24hrs = 24360
=864 10's, G=67% 10 0™,
Let the radius of the ‘synchronous’ ndnl be 1.

Rearranging Equation 9.7 gives
o GMTE
=T
_67%107" %60 % 10% x (864 x 10°
- w
o200 10
EX

24 10°m
Since the Barth has a radius of 6.4 x ur... then the
x10m.

67 10 N kg and the Earth has
0% 10° kg and rudius r = 6.4 x 1
1 Given G, M and r calculate:
(3) the period of a satellite orbiting close 1o the
Earths surface

(b) the height above the Earth's surface of o
‘weather satelite which orbits the Earth every
20
2 Use Kepler's 3rd Law to cakeulate R (in m) and T
(in Earth years) for the following plancts as they
orbit the.

Eanb Venus Satum
Ui 150K
af it/
I‘\m:n!nmu woorw
Earth years

Exercise 9.5: Examination
questions

Answer

36 10°m.

Example 8

s el 0o ol i, B
s for Mars 0 orbit he

Method
From Equation 9., since G and M are constant, then
72 Leti = time, years, for Mars o orbit
the sun. Since the orbit time of the Earth s 1, then
£_r @0
R 5% 109

= @315) =360
19

Answer
19 Earth years.

(Assume G = 6.7 % 10° N’ kg unless sated)
1 ke 3 wond cquon whichsae Newto's
of grav
Ny b a\mmﬂl o aspherkalpanet wih
the following propert
Mass my of e 62 ks
Radius ry of Mars = 340 x 10° o
Calelste the foce <xcrted on a body of mass
Lo0ke on the surfice of Man. Take
G=667%10" Natke?  [Edexcel 2001]
2 n -

Fig.94 Diagram for Question 2
X and ¥ are the cetosoftw sl spheres of
masses m and 4m respectively. The gravitational
5ld stengihs dut 10 he two spheres a 3 paint
Z, lying on the line between X and Y (sce
Fig. 9.4), are equal in magnitude. Show that

2v=22x

3 On the ground, the gravtaton! foce on 3

Wit o he gravitational force on the satellte

when at a height RS0, where R is the radius of

the Earth?

ALK B LW COSSW D 096
[OCR 2001)
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uniform sphere of mass M, the
gnvummml (el strcngth  the same 2 hatof
point mass M at the centre of the sphere.

The Earth may be taken to be a uniform sphere of
radius 7. The gravitational field strength at its
surface

What i the gra tonal field strength at a height
i above the ground?

IS
Ay ()
se-h

[OCR 2000]

Questions 5 and 6
ese questions are about the gravitational field and
polential near the planets Mars and Earth

5 Mars has a radius of approximately 0.5 of that of
the Earth and has a mass of approximately 0.1 of
the Earth. The gravitational field strength al the
surface of the Earth is approximately 10N kg "
Which e of A0 D below i the best estimate, in
Nig', o te gmatocal 6ld sogth 3 e
surface of M
A2 B4 C8 D2

[OCR Nuf 2001]

© The grtational ptenal t the sutace of he
Earth is ~6.3 x 10 kg’
Whih one of A 10D below is the gravitational
tial, ol o Eant rais
Shovethe surtac of the Ear
A-16x10
€ 13100

10*
[OCR Nuff 2001)

7 Fig 9.5 shows the final cquilibrium position of two
of the spheres in an experiment to determine the
universal gravitational constant, G.

m2sxi0tg
W-soxg
Fig.95 _ Diagram for Question 7
(o) et the magninde o th gravtations
force which i excried by the larger sphere

the smaller sphere. Is this an atiractive or @
repulsie force?

® Orgnaty, .yg smaller sphere was 60cm
further from the  larges

of the smaller sphere has changed during its

movement from is original position.

8 A binary star consists of two
2410 kg an

stars of masses
a0 6.0 10% kg hei conrs being

30 % 10°m apart. The graph shows how the
gravitational potential varies with distance

the centre of the more massive star along the line
joining their cenires.

(8)* Use the graph to determine where, along the
line of centres, the gravitational field srength
(intensit) is zero. Explain your reasoning.

t© part (@) by an

t calculation. [WIEC 2000]

© Verlty your anver
independent

9 Calculat the speed with which a body must be
rojected from the Earihs surface 50 a5 10
compltely escape from the Earth's graviational
efect (the escape specd).

Assume te Earhbas mas M = 60 10" g and
radiusr = 6.4 % 10°m.

10 The escape speed v from the surface of a planet
can be calculated fr 27, where g is the
acceleration of frec fall at the planct’s surface and
i the planets radius

For Earth the escape speed v = 11 kms ™.

dahrs . b ol st s (- e of
sl pteea e darce ph.



GRAVITATION

(0 Caleute e cape seed fo  planet ofthe
as the Earth but twice its adi
() The escape specd is independent of the mass
of the object being launched. Explain why it
is nevertheless desirable to keep the mass of
a space probe as smal as possibie
[Edexcel 2000)

1 @) D:ﬁnz

ons pocnial (s i)
(@ Vet of e
(b) Ux: the data lem 10 show that the radius of
eocatonary satlile s abou
B
massof Eath = 60 x 10%kg
gravitational constant = 6.7 x 10°
g 9.6 shows how the graviational potenial
h Eart's feld varies with distance 7
m,.., et e o s o 0
2 eosttonary sl
Wi i i 6, e
(0 the work requied 0 1 3 rocket of mass
200 dx:sm r=40x10'm 1o

g
Fig.06
12,0 Shon tht the syt v of @ peride i 4

of rdius 7 around a planct of
s M gien by the expresion
[Gst

where G s the gravitational constant,

[OCR 2001]

() In ST units the value of G is 6.7 x 10°". State
an S unit for G.

(@ Fig. 5.7 shows two o the moons, P and Q. of
o ‘moons move i ircular orbits
around the planct. The imer moon P i
13 10'm from the centre of the planct and
the ater moun 0 24 10 o e

e Thespecd of 023 ¢ 10'm

Fig.o7
(i) Determine the mass M, of Jupiter.
(i) Calculat the orbital specd v of P.
(i) Caleulate the ratio
gravitational feld strength of Jupier at P
graitational fild strength of Jupiter at Q"
(OCR 2001]
13 This quesion s about the potenl dangers of
ch as disused satellites and rocket
parts letorbitng the Earth.

-
Fig.08
® () Draw an arow on Fig, 98 1o reprsemt
e Tt s st on e i
in cirelar o
(i) Shﬂw Ihal for a euwlar orbit M radit
s M, 3 suelite
e ot peed . e by
L. e
VT

where G is the universal gravi
.




PHYSICS

) The kowest Eaborbieg sielies bave o0 b plce? Show eay bow you ke
orbialperiod of hout 50 m
& Show th the rdivs at n,awh they orbit

Caalte the semlruionoffe o

frardinsint oo the surface of M
=67 Nulky () Mars has two moons, Phobos and Deimos,
which move i circular orbits about the
@ Show hat e pehe <pm| & sbout Planct. The radi of these i are
938 x 10 km and 23.5 x 10" km respectively.
(i) Shw th e ki ergy of a 1000kg. The arbital period of Phobos is 0319 days.
satelite in this orbit is about 30 x 10°1. Calculate the orbital period of Deimos. Take.

©1 tome of the cxplose 667 % 10 N kg S [CCEA 2001]
< 10°1. By comparng s vale o me 17 (3) () Define

kinetic energy of a satellte in Earth 1. electic field strength,

suggest why ‘space junk’ p-mnun-gmrum 2. electric potential

isk to future space missions. (i) State how clectric fild strength at a point
[OCR Nutf 2001 may be determined from a graph of the

variation of electric potential - with
14 A spae s i aabe il bt t 3 distance from the point.

distance of 20000k from the Earth's
S of the ¢ (b) The moon Charon (discovered in 1978) orbits
The s of the bt of eostatonary el hé planes et P, 59 shows the varaion

of the gravitational potential  with distance

® (.) Use s information and Kepes i above the surface of Pluto along a line
‘o show tht the orbital period of the foining the cenres of Pluto and Chron.
e o sy 8 o S
Use the value 8 hours from (i) to estimate 1
the graitational field strength at the lr
ace station. State your result with an 8| T
appropriate SI unit. i i
(5 In s siable ciculr b the space sation s 7~ t
subject to a gravittions) force. State and 3
explin whether work s done by his force. H
[OCR 2000]
15 Landsat is a satellitc which orbits at a height of ~299)
9.18 x 10°m above the Earth's surface. ¥
Calulate the period of Landsat using the i
(uHuwmg data. H:nm determine the number of ‘ H z
orbits t makes per i
Uil da: L
(Radisof i oo of i T
Radius of the Earth 10°m Fig.9.9
55 0 m o te Ears s, & erketocal poatil I takza 8 b
e woud b s sty o e ot ponal s ken 5 ing
[Edexcel 2001] & Sugasst why al vlues of graviational
o potental ae negative
P (ii) By reference to your answer to (a)(ii),
freau ety e gt it on
eraph he magnitude
satellte in a geostationary orbit. the ml:nlmn of e alt that pnlm
(6) The plant Mars s radius 339 10'm and (i) Use Fig 99 to detmine, giing an
mass 6.50 % 10°kg. The length of a day on explanation of your working,
Mars is 8.86 x 10*s (24.6 hours). 1. the distance from the surface of Pluto at
) Al s obe
ar. Al wht height o 2 e clrion of T 1 on e
e ot of M shod e i surtsce of Chror



GRAVITATION

(©) A lump of rock of mass 25k is ejected from (50 Suggs oty o rock et o Poko
ron such that it travels won, the minimum speed on
towards Pluto. mcnmg Charon s different from that

Using data from Fig. 99, determine the caleulated in i) [OCR 2001)
‘minimum speed with which the rock hits
the surface of Pluto.



Section C
Matter

10
Elasticity

Hooke's law

Specimens in which _extension e
proportional 1o the spplied fore F (N) esia
10 obey Hooke's law. In this
F=ke 0.1
‘where k s the force constant or siffness constant
(Nm™') of the <pmmen and depends pon the
dimensions of the
Hooke's law is oﬁcn bcyzd by springs and
specimens of meal n teasion (and compression).

o R
o sorn - s e
Fversus o graph &

gio ung's
‘modulus E mm") sce be]ow S hich I the
same for all specimens of the same material,
irrespective of their dimensions, Specimens may
be stretched beyond their proportional limit, in
‘which case Hooke's law is no longer obeyed.

Work done in stretching a
specimen

Fig. 101
where FQ b the fre roqicd 1o prodce an
extension ¢ (m). The work done becor
ectontl cocrgy, wmed sl enerey, slur:d

in the specimen. Up to the elastic limit
nergy is renoverable.

Fig. 10.1 shows typical force extension graphs for
(@)  spring and (t) 2 metal specimen, Work s

the specimen when it is extended (or
mmpmswd). The work done is equal to the area
under th o (or compression) graph.
Within the proportional limit:

Work done = § Fxe 102)

Example 1

Aspringissretched by applyinga force ot Tabe 10.1
For the spring.

Table 10.1

ForceFON) 002 0w 0@ 0%
Extension ( 0 50 w15

(8) Draw a graph of extension (v axs) versus stretching.
force (y axi) and calculate the force constant of the
ring.



Ewasnicry

) Craie the workruir to i the e
@ iy by S a
et A Y

1 the spring is now replaced by two identical springs
placed side by side and next o each other, calculat:
(©) the extension of the double spring if a sirtching

force of 12N i applicd to the combination.
Method

foree of 1.2 (i this case effectively 0.60N each)

spring

is now 8ONm!, the extension ¢ for an applied

force of 12N i given by rearranging Equation
0.1):

/k = 1.20/80 = 0,015 m, or 15 mm.
Note that we could have obtained this answer
assuming each spring takes half of the stretching
force.

Note that i the springs had been inseres, instead of
in paralel the springs would have each taken the

JalTore and the eaension would have been the
Sum of the seprate cnsions.
Example 2
Foroah & roporional
i o
= zal
)
) ;
P
oot oo
Fig. 102 Soutonto Example e
(@) The graph is shown n Fig. 102. Since this s a
e i o s i, h g 6103, o o Erie2
beys Hooke's ntk of the  Fig. 103 shows a force-extension graph for a metal
spring can be ot hy earanging Equation specimen.
(002 i renf e s T
K= Fle = 080/@0x 107 = 40Nm (a) the force constant of the specimen.
(®) (i) (b) it ir p
raph up 10 i e g i facure.
K73 siigh tine and -
5010 e vt Eqaion 02y Method
ort Gone - ares ander o (@ The force constan & is found by rearranging
Work d inder graph Equation 10.1 and is the gradient of the straight
Z1/2x020 x50 x 10° line portio
~0s0ms
(i) The work requiredis hearea CDEF underthe
h.Thi & iven by:

Work done = area CDEF
=1/2x (CD+EF) x DE
=1/2%(040+060) x 50 x 10
=25m)

(©) In this case the double spring has a force constant of

the single spring, since cach of the springs (in
paralil) effectively takes half of the stretching

(b) Work done = Area under force-extension graph,
where force i in newtons and extension in metres.
(i) Area under lincar portion of graph
1 Height x Base
%200% 0310
0x107)
ot we coukd v s Equaion 102w
F=20Nande =03 %10~

79



cac PHYSK

00 We 10 04 te ate e the gragh
beyond the proportional kmit and up
fracture. This i found by ‘couning squeres
on the graph paper and is approximately
cqualto

661071 = 6.6 x 10721,
S0, total work done up to fracture equals
66x 10743010

Answer
@ 67x 16N
B 810 @ 98w
Example 3

st 3k gl e o el o
o el i an of
050

Exercise 10.1

1 A spring, which obeys Hooke's Law, i strtched
by applying a gradually increasing force.

(@) A force of 40N is needed 10 inereas its
Iengsh by 16em. Caleulte the force constant
of this spring.

9 The i i is i ed, is

. Th sppid ores bt

 ncreving
the extension from 2.0¢m to 5.0cm.

Theollowin tnslc e dta were chalne wing
2 metal speci

Load 1PN 0
Extensionmm 0

20 40 45 50 55
010 020 024 030 040

Callate () the energysored it
loss i gr al poental enrgy o the mass
during loading. Account for the differe 0 th
w0 e At e roporteal mi .ot
exceeded

Method
() We have
F=35xg=3N
and

50107 m
Equation 102 gives

Work done = 1 Fe = 1 x 35 x 08 x 10
=14x107)

“This s stored as elastic strain’ energy.

(6) Loss in PE = mgh. We have m =35,
h=080 107,

=10 a0d

35%10%08x 10
=28x107)

The sty sord s oy hlf e lom i

gravitational PE_because the wire

wadually mcl‘:.umg ey o

otend it The remsing groviaional P

Cocron would b Lo ot 1, e he
Cauibrium cxension.

Answer
() 141073, (6) 28 1070,

80

o the losd-cxtnson graph and e he
otk done n st e pecinen op 10 (9

the propotonal it um 40X 10°N), ()
fracture (load = N).

A metal columa shortens by 0.25 mm when a load
of 120KN s placed upon it. Calculate (a) the
ey o i e cohumn g ) te oss i

ational PE of the load. Explain why the
Vaues in (3) and (5 cifler. Asume. tha e
‘proportional limit is not exces

Stress and strain

o ONED)|
o
b
Fig. 104 A sold specimen under lension
Refe to Fig. 0.4 inwhich 3 specimen of orignl
 erossscctona area A (o
l' o)

n
subjected to a tensile force £
extension s ¢ (m). We define

) is
), 5o that its

asile stress = £ (Nm™2 or Pa)’
Temile stress o= . (N P
10.3)

Tensite st

={ (ounity (104

P —.



EuasTicTy

Example 4

A el of et 20mand s s cross
S0mm. When a tensie forceof 80

- Caeue (3 the

applic, i exnds by 046
1) te s he spcimen.
Method
We hae 1220, A= (010l = 165 10"
F =80 % 10° and ¢ = 0046 x 10°". So Equations 103
and 104 give
LE_S0x10 g0 o
@ o=F= 800 500N

@ 50 0N, () 23 %107

Exercise 10.2

A metal bar has circular cross-section of diameter

s for whkh the b i

A el speinen bas lengh 030m, I the
masinum train s mot to exce
(10107, i s o cvemion.

3 A metal bar of length SOmm and square cross-
section of side 20mm is extended by 001Smm
under a tensile load of 30kN. Caleulate (a) the
stress, (b) the stain in the specimen.

Young’s modulus

Up to a certain load, called the limit of pro-
portionality,” extension is proportional to applied
force, 50 that strain is proportional t0 stress. The
slope of the stress-strain graph in the lincar
region is called Young's modulus E. So we define

E=Z (Nm

03)

Work done per unit
volume

The work done per unit volume (sometimes
termed the energy der is equal to the arca
[ ——————

under the stress-strain graph. Within the
‘proportional limit:

work done per unit volume.

106)

where o s the stress (N m ?) required to produce
ine.

Example 5

A stee bar s of length 0.0 and has a rectangular

crosscion 1S by S 1 o sl e of
36KN produces an exension of 020mm,

m.m modal o sl A it the i o

tonality s not cxce
Method
From Equations 105, 103 4 104

o Stress _ Force + Arca)
Strain = (Extension + Original length)

a7
We have
Force = 36 x 10N
15 % 30 = 450mm* = 450 x 10°
0.20mm =020 % 107 m

So Equation 10.7 gives

_ (36 10°) £ (450 x 10°
N R
=20x10'Nm™

Answer
‘Young's modulus for steel = 2.0 x 10 N~

Example 6

An slumisium ally st in the landin ges ofan
irrat s crossscodonal area of 601

length of 045m. During landing the Tt
subjected to a compressive force of 3.6kN. Calculate
by how much the strut will shorten under this force.
90GNm and the proportional limit is not
exceeded.




ALt pHYSK

Method
Equation 107 gives

In this case the st is compressed. Since material in
gencral hase the same value for the elastic mudulus in
tension s in compression, it is necessr

replace extension ¢ in the
compression.

only 10
hove cquaton by

~ 60mm® =60 10 “n’, =045,
=90x10°, and require the

B6x10) + (60 x10°%)
(e +045)
Rearranging gives c = 0.30 x 10" m,

Answer

The strut shortens by 0.30mim.

Example 7

A it el i of knih, 00m and i
Lo s 4 s of 20 ppicd o' i
Asouin nal

exceeded, calculate 1ui the leumun \h) Ihc cncrly
sored e ik lune i, T e Voung
moduls. for

for steel as 20 104 Nm* and
10m:

Method
(@) Rearranging Equai

107 gives

We have

F=20xg = 200N,

Ax (0% 107

and

=025 10" m
(b) We have
£ =200/ x 107
and &= o/ = 200/(x % 107 x 20 % 10")

10

<10

8

From Equation 106
work done per unit volume = o x ¢

01 10 m?

Answer
(@ 025mm, (0) 10 10 Jm™

Exercise 10.3

(Assume that the proportional imit is not exceeded.)
1 Avertical copper wire is 1.0m long and has radius

Dom. A nm of 160N i siached i the bk

sion_of 045 mm,
Calmla!c (a! u.= s sre, (0 the tenis
strain, lue of Young's modulus for
:«ppﬂ.

N

A sl s b o crowsecionl aea of
10'mm’ and is 20m long. Calculate the
m:!nnudc o the compresive foss which il
n by 0.30mm. Assume that £ for
ity

3 Abronze wirc of length 1.5 m and radius 1L0mm is
ed endi-end 100 sl wie of enal s
Om long. Calculate (1) the
e of 30N applicd,
(b) the force required 10 produce an extension of
that E for bronze is
10% 107 N2 for steel 20 x 10 N>,
Hint: (a) total force acts on each wi
cquals the sum of cxtcnsions, (b) € x 1/E for
each wire, or use ¢ x F.
lowdof 11248 i graduaty aplcd 1 0 copper
e of kegth 15m ted. aea of o
80me e (a) the extension, o e
he wire. Take
copper s

-

he  Young
e

5 A steel bar has a rectangular cross-section SOmm
and is 20 long. Caleulate the work

done in extending it by 6.0mm. Take £ for steel
2520 10 Nm-

Temperature effects

‘When the temperature of  rod changes then ts
Tength will, if unrestrained, change such that:

Al=alaT 08)



EuasTicmy

e &1lsthechange g, I meys, a the
A &V or K, 1 the

temperature, in °C or

I, during a temperature change, the rod is to be
prevented from changing in length, large forces
are often required.

Example 8
Al spper o sof s sconalaes 1o’ ad
length 20m. Calc

2 Aot of ey ok comiasof s it of
length 15m and cross. area $0cm’,
Vil camped 11 . nds on 5 dy ahe the
temperature is 20°C. If the temperature fals to
0°C, calculate (a) the force the clamps must exert
0 slop the bar cotrcing and () the sain

nergy stored in the bar.

Exercise 10.5:

temperaue rses by 30°C, ) the fore nee o “

nt it from cxpanding by the amount in
thelincar expansiviy 2 for copper as 20 x 10 g m
the Young modulus £ for copper as 12 x 10 Nm .
‘Assume that the proportionallimit is not excecded.
Method
(@) We have 120, AT=4+30°C (4 sign for

empemue i) sod =20 10 Bqunion
0.7 gives

Al=3IAT=20% 10 x 2% 30
—12x10%m

(b) A compressiv force F (N) =5 xuwhcd which
is sufficent (o decrease the

Al=12x10%m
Rearranging Equation 107 gives

Ll e le 210,

() 12mm, (b) LIKN.

Exercise 10.4

(For stecl, take x = 12 x 10K~ and £ =20 x 10"
N, Assume that the proportional limit is not
exceeded.)
1 et he fre requined 0 egend a s rod
of cromsccion e 40mm? by the same
would et du o8 empenre s
OTGOK.Hin It ength 1t cnce

ion questions

(Assume g = 10ms™>)
1 i ping,whch oy Hooke' v s o
foree constnt k of ONm™
(@) You are to draw  graph of strtching force
sgins o o s spig for e
of ¢ from
 Use he space_ below 10 make any
calulations 1o help you draw this graph.
() On a copy of Fig. 105, label the axes
appropriatel, and draw the graph.

-

Fig. 105

() (i) Use your g i (@)(ii) 1o determine
the ired to streich the spring
from an it exicnion of Sm 0 8
fiol exicnson of 25mum. Show clary
‘you obtain your result,
@ S e principle of the method you
used 1o

(i), and
i o you i i o
2001
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CALCULATIONS FOR A-LEVEL PHYSICS

2 Aload of 40N is suspended from a paralll two-
spring system as shown in the diagram.

%

aon
Fig. 10,6 Diagram for Question 2
“The spring consant of cach spring is 20Nm
‘The elastic energy, in J, stored in the system s
AL BO2 CO04 DOS  [AQA2000)
3 \hny  speialis word are e to descrbe the
terials. Some of these.

ey
Brile, ductie, elastic, hard, malleable, plastc, siff

i important for engincers o know how different
materias belae. Ope common et which coud

be performed is to measure the cxtension of
sample when an increasing force is applied. A
force-extension graph for copper wire is shown
below.

L
i
A 8 - beaking
it ~pom

=
Etmsionto-in
From the list above, choose o words which can

explain the behaviour of copper. Explain the
meaning of cach word with refcrence 1o the
raph.

(3) Calculate the stiffness of the copper wire.

®) Esnmam the energy required 1o break this
[Edexcel S-H 2000)

4 Two mzl wires A and B of the same length are

energy of A 10 the stored energy of Bis

A4l B2l CHil D12 Eld

5 (a) Fig. 10.7 shows a vertical nylon filament with a
weight suspended from its lower end.

V

| ovomean

weon
Fig. 107

The crosesectons area of the flament &
80 107

“The Youns modulus of nlon s 20 x 10" Pa.
The ullxmnlc tensile stress of nylon is
9.0x 10" Pa.

Caleulat

& the masi weght I the et can
aking.

() the weight W' which will extend the
Glament by 0.50% of is original length.

) The inormaton in o) ghes the Youog
nylon for small stresses. By
eterene 1o e e siwcwe

tensile properties of nylon, suggest why this
value s inappropriate for large stresses.
[OCR 2001]

§ An oo s 0315 s cwpendd by ength
of copper wire from a rigid support
Taiked 10,3 poin adjucent o the support, and at
the same level, and relased from rest. Find the
minimum crossectional area of the wire if it i

1o break. Assume that Hooke's law applcs

throughout.
The Young modulus for copper 11x 10" Pa
and s el sengh i the s s
that applied  without breaking) is
i g [WIEC spec 2000]

7 @ (0 St Hockeom,
) Esplain

e vl 3 g siogs

mast have catie properte

(b) The data below are for a thin steel wire
suitable for use as a guitar string.

ultimate tensile stress:
Young modulus:
donal area: 20 %107 m?

In a tensile test, a specimen of the wire, of
original length 1.5m, is sireiched unti it
breaks.




EuasmicTy

obeys Hooke's law

Assuming the wire
throughout, calculate:
() the extension of the specimen immediately

before breaking;
(i) the elastic strain cnergy released as the
wire breaks. [OCR 2001]
8 A wire of length 3.0m is hung veriially from a
rigid support, and a mass of 0,15k is attached to
its lower end. Fig. 10.8 shows the arrangement.
‘The wire obeys Hooke's aw for all extensions in

this question.

Y

otskg
Fig. 108
(a) The Young modulus of the material of the wire.
is 20 10" Pa. The diameter of the wirc is
)30 mm. Calculate the extension produced in
the wire.
&) Caleue the el i nergy cored in
[CCEA 2001, part]

(i) an approximate value for the work done
10 sretch the copy eaking
point. [OCR 2000]
10 (9 A ment wie of orgatlengh L sod e
2 A is srechod by o fore F,
Camingan cxcsi
0 Waie down exprssions for the sran of
the wire and the stress in it

(6 Assumin hat the extenion i ich it
ooke's law is obeyed, obtain an
xpr:smn fo e Young modelus £ of

etal of the of d,e,

(@8 Find the relton between the foree
constant k of the wirc (the constant of
proportionality in the Hooke's law
cquation) and the Young modulus £ of
the metal of the wire.

(1) Explin vy one refns 10 e Youeg

of the metal of the wie, but to

oo oot e e it
(b) Describe, in detil, an_experiment to
determine the Young modulus of copper.

Y et iy e o1

di of the method, headings

{or's bl o esls that would be aken and

the method of analyss of the results o obta
the value of the Young modulus. Mention

as a specimen of copper wire.
he length of exchspeimen i 160 and the

() A uniform rod of length 0.80m and weight
J5ON is suspended from a horzontal beam

:npm oo w«-mem are shown in
Fig. 109,

Fig. 108

@ O St wicho e o s i
) Explain which feature of Fig. 109 leads
you to your answer in ().

hed in Fig. 10.10.
V.
cosper st
Fig. 10.10
The wire at the lefihand end of the rod is
copper, of origi ind area of

Cromsccion 035t That at the righ
hand end i stecl,of the same original length

(i) Find the extension in each wire, sssuming.
tht the wies remai vertal and thal
obeyed.

@) Bc\:ln: e i end by different

©) usi jven,
(i) the area of cross-section of each specimen,
(ii) the Young modulus of the glass,
(i) the uhimate tensile sres for copper,

Rorzonl. It eird o ren e
10 the horizontal posiion by attaching an
additonal load (0 it. Find the minimum
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additional load required to do this, and

suspended rod has been made
horizontal by attaching the additional

oad in (i), decide whether this cnergy is
thesame o e of e e, or wheher

e et v o e s i, Epain
your reasoning.  [CCEA 2000, par]

11 The graph pant_of the stress-strain
relationship for steel. No values are given on the
stres axis.

S
Caleulate the energy density for steel when subject
t0 a strain of 13 Young modulus for
steelis 22 x 10" Pa
Nylon and steel have similar values for their
ultimate tensile stress.

‘Why are steel cables preferred to Nylon ones in
the manufacture of the supporting cables for a
suspension bridge? [Edexcel 2001, part]

12 (@) Ol s described s it matcrial with

amoghous s Explai

K yers i) amorphous.

0.11 shows 2 gaph of el s
gt el srai or a gss

the Young modulus for glass;
the strain energy per uait volume just

the cxtension just before @ fibre of
unstrtched length 050m breaks.
(OCR 2000)

13 This question is about the plastic deformation of
aluminium,

i espands when 5 temperanre cc.
& good sprosimtion th icrae A1 in the
|:..,n. Tof an aluminius
Al=aaT
where AT'is the rise in temperature. The constant
i called the linear expansiviy of aluminium. Its
numerical value s given at the end of the question.

‘When aluminium cools, it contracts by the same
ount.

(a) To confirm that you understand the process,

are given at the end of the question.
® 0 An suniam rod 030 long s hewed

has cooled 10 its original temperature.

(iil) The rod has a cross-scetional arca of
20mnr’. Caleulate the tension in the rod.

©
Fig. 10.12
Fig. 10.12 shows an aluminium frying pan.
sminium undergos plastic el o

strains in excess of 0
Explain why pouring cold water into the hot
fiying pan causes its base to become
permancaly curved.

Fig.10.11

86

Numericaldata
dvity of aluminium = 23 x 100K~
‘Young modulus of aluminium =71 x 10" Pa
[OCR Nuf spec 2000]



Section D

Oscillations and waves

11

Simple harmonic motion

of SHM

Fig 111 shows amiss o theend of aspring. When

e

S

1¢

Equium postion 0 —»|

Fig. 1.1 Vartical oscitations.

o Al veocty o tang s O

XN
Timet
e

o Prasosogis
(o) Parce i vorcar SHI © e rouing rasos
Fig. 112 SHM and phasor reprosentation

otatng dus
Rty e

ki b rtobg fowce e which
proportional to the displacement of the mass from

proportional to the displacement from that poirt.
Fig. 112 illustrates some characteristics of the
motion. Fig. 11.2¢ is the displacement-time
graph of the vertical SHM shown in Fig. 11.2a.
Fig. 11.2b shows the rotating radius or ‘phasor’
representation of SHM ~ the point R moves in
uniform circular motion with angular velocity o.
Tt can be shown that the motion of R projected
anto hoverdal dicter XY i the e 8 the
SHM shown in Fig. 11.2a and c. Note that the
smpltde of SHM is the radhs OR, aud the
“phase angle’ ¢

gt
v
.




PHYSICS

l-mm the defston ef SHM, e eveeraions of
the placement y from
e Cqulbriam paiion by

~Constant x
where the negative sign indicates that  the
acceleration is in the opposite direction (0 the
displacement. Also, it can be shown tha

any

where o is the angular velocity of the rotating
radis i Fig 1120 wnd way be calld the
ngular frequency of the simple harmonic

Example 1

A body osciltesverticaly in SHM with an amplitude
of 30mm and a frequency of S0He. Caleulae the
aceeleration of the partice () at the exremitiesof the

moton, (b) at the centre of the motion, (c) at 4
posiion midway between the centt and the exzemity.
Method
We have frequency /= SOHz. Thus the angular
velocity o of the rotaing racius in Fig. 1120 i, from
Chapter §, given by

0= 2sf = 0zrads !
We use Equation 11.1 10 find the acceleration .

(a) At the 10p of the motion we ascribe y a positive
0.030m. Ths

iyt he bt o he ol
0.030m, 50 = 435

Note: a is positive (upwards) when  is negative
(downwards)

(b) We havey =0, 500 o

() Ata position halfiway upwards y = +0.015m. So.
iy = 100z % 0015

“1sems?
At a position halfway downwards y = ~0015m and
a=+15zims ",
Answer
(@ T30 ms 3, () 0, (©) F157ms

88

Example 2
Aozt o ibraes el n b i
riod of 0205 and with slowy ncressing ampi

What b the masionn ot apliuce wm

will allow a mass, resting on the platform,
Contactwith the pltors? Assume ceeertion due 0
gravity = 10ms”.

Method

When the platform moves downwards the mass will

a rds
‘¢ maximum downwar
platform s at the top of its motion. If the amplitude is
. then, using Equation 1.1,

at the t0p of the motion. Now
‘period of the mtion, zq...l;nm

When the e point of leaving the platform
0 (negate mdites dowmard)

(22,
(20

‘We have g = 10, 7 = 0.2 and require .

Rearranging Bquation 12 ghves

22T where T, the

2

Maximum smplitude = 10mm,

Exercise 11.1

1 A body oscillates in SHM with an amplitude of
20cm and a periodic time of 0.25s. Calculate

(6) the acceleration when it is displaced 0.5 cm
above the centre of the osclltion. Note:f = /7.
2 The piston in a particular car engine moves in
ity SHM wilh an amliade of
g and the piston
et Caleulate
maximum value of the aceeleration of the
piston, (b) the force needed (o produce. this
acceleration.

3 A body of mass 0.40kg has a maximum force of
12N acting on it when it moves in SHM with an



S moron

amplitude of 30mm. Calculate (3) the frequency,
m the periodic time of the motion.

all mass st 0  hczonal o wich
Torates vl SHM
amplitude of 30mm and with a 1kMy ocvnsog
frequency. Find the maximum value of the
frequency which wil allow the mass to remain in
contact with the platform, Assume g = 10ms .

»

Mass on a spring

When a mass m (kg) i attached to the end of a
spring of force constant k (Nm '), the periodic
time 7 (s) of oscillations is given by

r=2m /8 ar3)
Since T = 2n/w we have

wi= 5 (14)
Example 3

A mass of 0.2kg s attached (0 the lower end of a ight

helical spring and produces an extension of 5.0

Calculate (a) the force constant of the spring.

The mass is now pulled down  further distance of

20¢m and released. Calculate (b) the time period of

Subsequent oscillations, (c) the maximum value of the

aceeleration during the motion. Assume g = 10ms .

Method

@ We st the sping cbeys Hooke' ev
From Chapter 10, Equation 10.1, an applicd force

N prodacce  chanse inength e hen by

o Feke s

where k (Nm ") i the force constant of the spring

=10,

kg an
0 10, Equaton 115 gves.
0210 =k x50 107
HONm!

® WeuscF.au tion 113 with m = 0.2 and & = 40.

m_
TR

Note that T s independent of the inital

displacement (20 cm in this case),

=0445

(©) From Equation 114

For the maximum acceleration we use Equation
111, with displacement y at its maximum value of

The negative sign indicates direction.

e an alternative way to find a. At maximum
aisplacement,the et force acting on the mass is
0% 2010
BN

F = x Displacement

Thus the maxinum acceleration a is given by

Foce 080 _ 00

Mass ~ 020

Answer
(@) 9Nm™, (b) 0445, () 40ms™>.
The simple pendulum

iodi of “smal

The periodic time T(s) n
cuclations of & Smple pescilum of length ()
is given by

T=2m i
&

where g is the acceleration due to gravity,

a1

Example 4
i ey of oo of 3, siic

pendulum of length 80 cm. Assume g = 10ms
Method
We use Equation 1.6 with /= 0.80 and g =
P jt 080
T=2mfL /250
Ve~ V10
=1
L =0seHz
Now frequency 7 = 0S6H:
Answer
056Hz.
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Example 5

“Two simple pendulums of length 0.40m and 0.60m are.
set off oscllating in siep. Caleulate (2) after what
pendul

step, (b) the number of oscilltions made by cach
pendulum during this time. (Assumeg = 10ms %)

Method

(0 The o pendulums bum ot of st sioce hey

tave diflerent periodic times. Let T, be the

e o he pendlim ot engh

40mand T, hat o the pedlum ofcagh
1= 060m. Using Equation 11

—2m [ e [04
- ZK‘/K BE R

During the required time interval the shorter
pendulom villcomplete one moreoscillation
than th longr pendulum. Let ¢ be th time
intenval between the pendulums falling in step. If
1 s th mmber of selations of the shier
odulum, (1 ~1) cquals the number of
oscilations of the longer pendulum. Thus

f=nTi= (- DT
So,since Ty = 1287 and T; = 15395,

nx1257= (1) % 1539

Ty s0
546 % 1257 = 6565

6 The shrirpendunmake 1= 5.3 aclaions
he longer pendulum (1~ 1) =45

it

Answer
() 695, (5) 5.5 and 45 oscilations.

Exercise 11.2

(Assumeg = 10ms )

1 A mass of 0.60Kkg s hung on the end of a vertical
light spring of force constant 30Nm ", Calculate
(a)the extension produced, (b)the time period of
any subsequent oscilations, (¢) the. number of
oscillations in 1 minute.

Smoomtoor
Fig. 113 Diagram for Quostion 2

Refer 10 Fig. 113, in which the 0.30kg mass is
entical prings of force constant
I the mass s now displaced by 20mm
© the left of its equilibrium posion and
et et (0) e e ocriod and
frequency of st tions, (b) the
aceleaion i the eenie and exiremtes of the
oscllation.

Note: effective force constant s twice that for one.
spring.

Caelte th Icngh of o sinplc peditum of

petodic i () L0, () 035 I e wo ar

16 (O the mamber of

e hy e bcp v .1 e,

T imple pendums. of stghty ditrens
ngth, are set off oscilsting in siep. The next

ime thy ars in ep b aer  time of 20s as

elapsed, during which time the longer pendulum

has completed exactly 10 oscllations. Find the

length of cach pendulum

-

Displacement, velocity
and acceleration
variation with time

Refer to Fig. 11
apply in SHM:

The following rel

ships.
(1) The displacementy is related to time by
y=rsin0=rsinwt

)

0. The maximum
displacement cquals the amplitude 7.

(2) The instantancous velocity »
o o a8 e o he
placement y by

v=w/irt =y {18)



SIMPLE

Note that v=0 at the extremities of the
oscllation, when y = r. Also v has maximum
value +r when y =0, at the centre of the
oscillation.

@) The imaniancons seckeraon & given by
~w¥rsinor. Sincey = rsin i then:

ay

This agrees with the original definition.

Example 6

A body vibrates in SHM in a vertical dlmmn with an

amplinide of SOmim and  perodic tme of

(8) Caulate the displacement after () 255, ) S0,
assuming that the displacement i z€ro a time.

&) Callnte et i ks the by 10 mow 0
displacement from a position
S mm blow
Method
(0 The anguiarwloky oo the motion s g by
g =405. S0 0 = 05trads”

< Equaton 117 Wil 7.~ 50 10°m 10
find diplocement.
(i) We have r = 25,50

rsinar = 50 10° ’xln(ﬂjx x25)
= 505107 5in 1.25
Now arad = 160, 301257 = 225, and
50107 sin225° = ~35 x 10~ m,
Note: we assumed that the body was initally
moving in a posiive dircction. The negative
a0 ndictes u dilacement i e appose

direction
(i) We have 1= 505,
it = 0 10
50 10 sin 450"
We subract multiples of 360", which means
tha previous whole oselaonsar igored
Subiracting 360" have

*sin (057 x 5)

y=5llx|l)' -

(®)

or 0y =0412rad
Since 0 = w1, then

1= 0o = 0412057 = 02625,
Similarly:

(Note this time of 1.0s corresponds 10 the time it
takes to avel 14 of a period, from zero
displacement to its first maximum.)
Hence, ime taken:

= 100262 =0.738s.

(@) () ~35mm, (i) SOmm. (b) 0.745.

Example 7

Aoy movsin M with an e of S

a frequency of 20Hz. Clculate the values of

o) it te e and cereits of e

oscillation, (b) velocity at these positions, (c) velocity

ndaccirion 3 pont vy eteen e e
and exremity of

Method

We have o = 22f andf = 20.S0 = 4 0n rads

(a) We use Equation 11.1. At the centre y =0 so
a=o.

the _extremities the displacement equals
30107 m. So

010
— 048z ms

When y is positiv a is negative and vice versa.
8. AU the centre y =
+or, depending on whether the
moving upwards (+) or downwards (<) at that
instant.

Sincer =30 10 and

s,

tor=+0.12xms

20mm to Shym. Referring to Fig 1.2 we have
31=20% 10~ m and y; = S0 10°m. We use
Equnmn 117 to find 0, and 0; and the

ing times 1 and 1; for the rouing
radiu of Fig. 11.2(b). Thus:

i =rsind,
205107 =50 % 107 sind);

At =0
© A1 e iy polnt y = 15 < 107m. Since
" Equation 118 gives
Mr ~3%) = 420 - 15%) x 107

—033m:

“This can be positive or negative depending on
Which way the body is moving.
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Note that v=0 at the extremities of the
oscllation, when y = r. Also v has maximum
value +r when y =0, at the centre of the
oscillation.

@) The imaniancons seckeraon & given by
~w¥rsinor. Sincey = rsin i then:

ay

This agrees with the original definition.

Example 6

A body vibrates in SHM in a vertical dlmmn with an

amplinide of SOmim and  perodic tme of

(8) Caulate the displacement after () 255, ) S0,
assuming that the displacement i z€ro a time.

&) Callnte et i ks the by 10 mow 0
displacement from a position
S mm blow
Method
(0 The anguiarwloky oo the motion s g by
g =405. S0 0 = 05trads”

< Equaton 117 Wil 7.~ 50 10°m 10
find diplocement.
(i) We have r = 25,50

rsinar = 50 10° ’xln(ﬂjx x25)
= 505107 5in 1.25
Now arad = 160, 301257 = 225, and
50107 sin225° = ~35 x 10~ m,
Note: we assumed that the body was initally
moving in a posiive dircction. The negative
a0 ndictes u dilacement i e appose

direction
(i) We have 1= 505,
it = 0 10
50 10 sin 450"
We subract multiples of 360", which means
tha previous whole oselaonsar igored
Subiracting 360" have

*sin (057 x 5)

y=5llx|l)' -

(®)

or 0y =0412rad
Since 0 = w1, then

1= 0o = 0412057 = 02625,
Similarly:

(Note this time of 1.0s corresponds 10 the time it
takes to avel 14 of a period, from zero
displacement to its first maximum.)
Hence, ime taken:

= 100262 =0.738s.

(@) () ~35mm, (i) SOmm. (b) 0.745.

Example 7

Aoy movsin M with an e of S

a frequency of 20Hz. Clculate the values of

o) it te e and cereits of e

oscillation, (b) velocity at these positions, (c) velocity

ndaccirion 3 pont vy eteen e e
and exremity of

Method

We have o = 22f andf = 20.S0 = 4 0n rads

(a) We use Equation 11.1. At the centre y =0 so
a=o.

the _extremities the displacement equals
30107 m. So

010
— 048z ms

When y is positiv a is negative and vice versa.
8. AU the centre y =
+or, depending on whether the
moving upwards (+) or downwards (<) at that
instant.

Sincer =30 10 and

s,

tor=+0.12xms

20mm to Shym. Referring to Fig 1.2 we have
31=20% 10~ m and y; = S0 10°m. We use
Equnmn 117 to find 0, and 0; and the

ing times 1 and 1; for the rouing
radiu of Fig. 11.2(b). Thus:

i =rsind,
205107 =50 % 107 sind);

At =0
© A1 e iy polnt y = 15 < 107m. Since
" Equation 118 gives
Mr ~3%) = 420 - 15%) x 107

—033m:

“This can be positive or negative depending on
Which way the body is moving.
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Equation 111 gives

4wy (165 <15 <107

= 0245 ms

‘When y s positive a is negative and vice versa.
Answer
(@) 0,5

40487’ ms?, (b) +0.12xms™,0
© £033ms 02457 ms

e 11.3

Exer

1 Abody i vibrating in SHM in a vertcal dircction
with an amplitude of 40mm and a frequency of
0.50Hz. Assume at 1= 0 the displacement s zero

and itis moving upwards.

@ Clelte the vl o placement, clocky
and a cach following
s (i -zmn\h) oo

e 150 200 Sk graphs of
displacement, v:bmy and  acceleration
against time

Calculate the time it takes o travel from an

upwards displacement of 20mm 10 one of

30mm in the . Compare this valuc

of time with that taken from rcadings on the
displacement.time graph.

2 A body vibrates in SHM with an amplitude of
30mm and frequency of 0.50Hz. Caleulate (a)
the maximum_ acceleration, (b) the maximum
velocity, (c) the magnitude of acceleration and
locky when the by i displd 10mm trom

equilibrium positi

Stat the value of the constants r in metrcs) and
© (in rads™) in the cquation y = rsinet which
describes the motion of the body.

Energy in SHM

re is a continuous interchange between
Kinetic energy (KE) and potential energy (PE)
during vibration. Assuming no energy losses, the
total cnergy is constant. Al the centre of the
oscillation we take PE as zero, so all the energy
here is KE. Thus at the centre of the oscilation
Total energy = KE = {mv?
Nowv = (+)or at the centre, so

Total energy = KE={mo'r’  (119)

Example 8
A by of s 010k ol SEN it an
de of S.0cm and with a frequency of 050Hz.

Cakulte (3 the i vl 4 (5 h i

value of s Kineti energy. Sate where these ocur.

Method

(® The masimum KE i st the cenre of the motion
We we Equation 119 in which m — 010kg,
o =2nf =21 x 050 = xrads™ and amplitude
r=50x107

€ Toe i v of KE o theecemits of
the motion. Since velocity v is zero here KE
Answer

(a) 12x 10°*J, atcentre, (b) zero, at extre
Exercise 11.4

1A mas of D30y v in SHM with 3
. 1f its amplitude is 20mm,
Clulte th feuency of the motion.

2 AmssosclacsnSHMon e cnd o pring of
foree consi amplitude of the
oo S, kit the s W of
the mass. (Hint: * = kim.)

3 A body oscillaes in SHM with a total energy of

20m. Caleulate the total energy if (scparately)

(3) the smplitude is doubled (frequency being,
constan);

(b) the frequency is baved (amplitude  being
constan);

() the umplitude and frequency are both
doubled.

Exercise 11.5:
Examination questions

Assumeg = 10ms * (10N kg ).

1 A motorist notices that when driving along a level
rosd st 95k the cringwheel s it
an amplitude of ¢ speeds up or slows
o b rple e o vt oo
smaller.

Explain why this is an cxample of resonance.
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Equation 111 gives

4wy (165 <15 <107

= 0245 ms

‘When y s positive a is negative and vice versa.
Answer
(@) 0,5

40487’ ms?, (b) +0.12xms™,0
© £033ms 02457 ms

e 11.3

Exer

1 Abody i vibrating in SHM in a vertcal dircction
with an amplitude of 40mm and a frequency of
0.50Hz. Assume at 1= 0 the displacement s zero

and itis moving upwards.

@ Clelte the vl o placement, clocky
and a cach following
s (i -zmn\h) oo

e 150 200 Sk graphs of
displacement, v:bmy and  acceleration
against time

Calculate the time it takes o travel from an

upwards displacement of 20mm 10 one of

30mm in the . Compare this valuc

of time with that taken from rcadings on the
displacement.time graph.

2 A body vibrates in SHM with an amplitude of
30mm and frequency of 0.50Hz. Caleulate (a)
the maximum_ acceleration, (b) the maximum
velocity, (c) the magnitude of acceleration and
locky when the by i displd 10mm trom

equilibrium positi

Stat the value of the constants r in metrcs) and
© (in rads™) in the cquation y = rsinet which
describes the motion of the body.

Energy in SHM

re is a continuous interchange between
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Total energy = KE = {mv?
Nowv = (+)or at the centre, so

Total energy = KE={mo'r’  (119)

Example 8
A by of s 010k ol SEN it an
de of S.0cm and with a frequency of 050Hz.

Cakulte (3 the i vl 4 (5 h i

value of s Kineti energy. Sate where these ocur.

Method

(® The masimum KE i st the cenre of the motion
We we Equation 119 in which m — 010kg,
o =2nf =21 x 050 = xrads™ and amplitude
r=50x107
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Caleulate the maximum acceleration of the
steering wheel given that its frequency of
vibration is 2.4 [Edexcel 2001]

A mass o 16kg i suspended from a light vertical
spring and_oscilaes with a_period of 155,
Calculate the force constant of the spring.

A 060kg mass i suspended from a light heli

vibration can be varied as shown in Fig. 11.4(a).
i tude of vertical vibrations

of the mass, as the frequency of vibration of the
g i varied, i shown in Fig 11.4(b).

Estimate the resonant frequency of the spring-

mass system using Fig 114(b). Use this value to

calculte the spring constant f the spring.
@ Varible.
Feaney
=]
-
osig
et s
® 4,
g[ N\
£
% 9 :
e ]
o8 T
Fig 114 Information for Question 3
Al ofmass 025 s rapped inasider'swebof
negligible mass. When the fy struggls, i is noted

e it i frequency of 16Hz.

The system of fly and web may be assumed o

behave in the same way as a loaded helical spring.

(8) Calculate the effective force constant & of the
web,

(9 Find e tequeneyof vration i 2 bubotle
f mass 1.0g were trapped at the same point

it same e, mtend o he Ty
[CCEA 2000, part]

 The masof an enpycars 01y It s upponed
on four identical springs. An evenly distributed
ioad of mass 400Kg caees the cr 1o compress
cch g by st o 0070 g
provides an upwards force F, give
et s b ompresion o e g and -
the spring constant.

(@) Caleulate (M value of the spring constant
fo

8 o londed car s pished dowrwrds o then

Calculate the period of oscilation of

teeTs springs. Neglect the effects of
damping.

Predict one disadvantage of a car designed
with:

(i) a very long period of oscillation;
i) a very short period of oscilltion.
[OCR 2001]
© (o) Al hela springissspended vercaly.
The umtched leoglh of e sring
. When a mas of 5005 s mracked o
he Tower end, e toal lngih

Caleulate the period of small
oscillations of the mass.

(b) With a mass M attached o the spring, the
i of venial oulitons & 1.
Calculate the new frequency of vibrations
2 makie of he ol ey, i e

were increased to.

vertical

7 This question is about oscilltions of  tethered
trolley.

A trolley is tethered by two elastic cords on a
Fig.

horizontal 115 shows the
arangement.
4
Z
Fig. 1.5
‘The two identical elastic cords obey Hooke's law.
for trolley displacements up 10 and  including
initial

, the welly emsos

simple
variation nl meﬂﬂ resoring e Fo i lm!ky
displacem
(@ () How can you tell from the graph that
Hooke's law is obeyed?
(i) Give a physical reason to explain why the
gradient of the graph i negative.
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Fig. 116

® () Usethegraph o fnd o for he e
System. Make you

@ The lm!ky has a mass of 080ke.
ulate the period of oscillation when
psend Amphiude s 010,
©) 9 Whatwouldve e period o xcilionof
atrolleyof mas 040K whe
the same way? Explain your answer.
(i) What will be the period of oscillation of
020Ky oy when s ampliuc s
reduced 1 ? Explain your
@) When the ol diplcement cxods 0.10m,
other cord
Comimuen ey Hooke o bl
@) On Fig. 116, continue the force;
Jacement graph o bt cnds 0 show
this behaviour, Draw these extensions as
accurately as you can.
Dosste troley exuesle bamosic
motion when displace
Explain your answer.

ok Nt 201]

A mase of 80k i suspended from a light vertcal
Sprng of force comsant 20 10'Nml. The
mass is displaced downwards by 9.0mm and then
released. Caleulate

Uha on Exth, what would the e i period

2 Give your answer i terms of

11 Two simpependuns o ity dieen ngia
are set off oscilting in pl ime periods
are 100s and 098s.

osci the shorter pendulum during

the time interval it takes for the two pendulums

10 be once again moving in phase.

e 1 moe ot

12 A body is oscllting

simple harmonic motion as
described by the following cxpression:

= 3sin (20n1)
Caleulate the (minimum) time it takes the body to
move from its mean position 1 its position of
‘maximum displacement.

13 A helical spring has a spring constant (force
constant) SUN. The springis bung vertially
and o 0.40kg is attached 1o the

lower end.

(@) Calculate the extension of the
(Hooke’s law is obeyed )

(b) "The body i then pulled down 20mm from the
cquilibrium position and released. It oscillates

spring.

“The magniu
moving in simple harmonic

where x is the displacement from the
cquilibrium position.

Caleulate

 the peiod ad ruensy of e

oscilltions,

m: g o the il aceeration
the body when it s released,

i) e speed of the body when it is S.0mm
Delow the e poskions

(i) the time e body 10 move t©

e equiibrum postion fiom a_point

50mm below i, A 2000]

1a m movment o th ey by e ssumed tobe
e harmonic pproximately

nic with a
eqnz.! 10 12 hours. The. aumm venar shows &
vertical wooden poe fixed firmly (o the sea bed.

(a) the period of the
(b) the maximum acccleration of the mass

I the period of oscillation of a simple pendulum is
doubled when the length of the pendulum is

incesed by 1.8, bl e gl engthof
the pendulum in metres

A simple pendulum has a od T at the

surface of the Earth. If taken to another planet
where the acceleration due 10 graviy is one half

pole a point R.
() What i the amplitude of this tide?

(b) High tide on a partcular day is at 9.m. Suate
the next mid-tide and the nest

(©) Caleulate the time at which the falling water
level reaches the ring R.
[Edexcel 2000, part]



SIMPLE HARMONIC MOTION

@ Pt the pois rprsening maxina and
ic cnergy on the graph pri
o vt e he eh of ke cN:yg
s time.

iz

15 A metal sphere of mass 025kg hangs from a
spring. The top end of the spring is clamped. The
sphere is raiscd 0.080m above its equilibrium
position and released.

A displacement vs. time graph for the motion is
given below.

Fig. 11.7_Diagram for Queston 16

Fig. 117 shows a mass of 0.50kg which is in

(a) Write down the periodic time of the motion.

‘and an amplitude of 40cm, calculate the energy
(b) Caleulate the maximum Kinetic energy of the associated with this motion.
sphere.
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Waves and interference

Wave relationships

Factors affecting speed

A progressive wave transfers energy from its
source with
wavelength / (m) and frequency f (Hz), then

7Y azn

The periodic time T(s) of the wave motion is
related to frequency f by

122)

Equations 12.1 and 122 apply to longitudinal and
transverse waves.

Example 1

Aprogresi e el disanceof Semin 5.1
the distance between successive.

‘The speed c of (longitudinal) sound waves in
given by

c=VEp a23)

where E is the Young's modulus (N m™?) of the
material and p is the density (kgm’

‘The speed of propagation of transverse waves
along a string or wire s

\/E (124)

where T'is the tension in the string, in newtons, m
the mass per unit length of the string, in kgm'

Example 2

(@ Cs ot opsgation o nghncioa

wave motion.
Method
The speed c s given by

 _ Distance tavelled (m) _ 18 x 10°2
Tmewken () 15
~o12ms !
Now wavelength 060m. Rearranging
Equation 12. gives
r=5=8220m

Rearanging Equation 122 gives

- 0505
T-1-1-05,

7
Answer
(@) 20Hz, ) 0505

%

waves in st s
To2 107 Nar ety 75 ¢ kg

(8 Calott the me 1 ks e e the ol 10

ravel 10 compare.this with

eken sound 10 et L0k I i . prne the
speed of sound in air is 3.3 x I

Method

@ Wo we Bution 123, n which £ =20 10"
and p =78 I

o= Vip - (GO0 1)
=506 % 10°ms™

8 The time taken 19 s ghven by

distance travelled (m)ispeed ¢

‘where distance travelled = 1.0 x 10°m.

For the wave in the solid
fos = 10 107506 x 10° = 0.1985
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For the wave in
o 10733 10 = 2035

The wave in the solid takes much less time to
travel 1.0km since ts specd is much greater.
Answer

(@) 51 10'ms

' (b) 0205305
Example 3

A horizontal steetched elasic string has length 30m
and mass 125. It is subject 10 3 femsion of 16N,
“Transvers waves of frequency 40Hz are propagated
down the wring. Calculate the ditance hetween
Sussesive cressofthis wave motion.

Method

length of

We use Equation 124, with mass per
singm = (12

10030240 410 kem

The distance between successive crests s the
legth . We bave frequency [ = 40Hz

Rearranging Equation 12.1 gives
e 2

50m

Exercise 12.1

1 The speed of clectromagnetic waves in air is
30 % 10°ms ", Calculate (a) the frequency of
yellow light of wavelength 0.60 x 10 *m, (b) the
yalengh of rado wavws of fcqueney
20 10°H

2 (akulzlc the Young's modulus of aluminium,
that the speed of propagation of

Tongiudina) vaves '8 $0% 10 mes and. s
density is 2.7 % 10" kg™

3 The speed of propagation of sound waves in sicel
i55.  10°ms . Caleulate the speed of sound in
a solid with the same density but with hall the
Young's modulus

4 The speet of uamese e song 3 e
wire is SOms\. What is the speed when the
tension in the wire is doubled?

5 A horizontal stretched elastic string i subject to &
tension of 25N, Transverse waves of frequency
S0Hz and wavelength 2.0m are propagated down
the string. Calculate (2) the speed of mc wanes,
(b) the mass per unit length of

Fig. 12.1 showsthe displacementy atall points on a
et e e, over asingle wnelenglh.
It shows how displacement” y varics with distance

- The parie at P lgs behin the prce 1 O by
haseamgie  (nradians) gven by

Answer
030m.
Phase angle

[a—
Fig. 121 Displacement at a fixed time.

RN
j% -k

T

i
o) =
-0 i X
) : -

) Dlplacoment verss chstance

“Deplcmcnt s v i it on 4 i v
st i n Chapir 1 1 i - e P 12
ond Equsion 117
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=57 s 12
@5 125)
‘The relation between y and.x in Fig 12.1bis:

y=rsind= sin’T”uulm 126)

where k = 2/4 is called the wave number.
Example 4
A progresive wave I

oginde 040m d
ime the displacement

wanelength 20m. At a given
¥ =0atx = 0, Cakculate

(@) the displacement atx = 0.50m and 1.4m;

(8) the phase angles at x = 0.50m and 080m;

(6 th hate dilrncebervenary b s ich
30m apart on the way

Method

‘We have amplitude r = 0.40 and wavelength #

(3) Using Equation 126, with
k=23

e have:
forx =05,
3= rsink = 0.4sin(x x 05)
= 0.45in90" = 0.40m
(Note here that y = r, since ¢
14,
= rsinke = 0dsin (x x 1.4)
=0.45in252° = ~0.38m

14

forx

Note the negative sign which indicates
downwards displacement, assuming upwards is
positive.
(b) Using Equation 12.5:

forx =05, ¢=3F

forx =08, ¢=7
(6 We cun el Ecuaion 125y
S

where 8¢ is the phase difference in_ radians
between two points spaced Av (m) apart
wave. We have Ax = 0.30 and 7 =20, 50

JURE S S

Ko e s ), s o
5 o 55 . s sl O30

et

Answer

(a) 040m, ~0.38m; (b) 057 rad, 08xrad;
(©) 03nrad

Exercise 12.2

A wave on a stretched string has amplitude S.0cm
and wavelength 30cm. At a_given time the

displacement y =
wave displacements at x

(b) the phase angles at.x
2 A progressive has wavelength 20cm.
Caleulate the mi distance between two

points which differin phase by 60° (73 rad).

3 A tansverse wave travels along a horizontal
stretched string. In front of the string is a screen
7 oro st it 40t ll an obseer cansee

o of two poitson he sing plced

ohacave ootcs hat

wave, (b) two possible values for the wavelength
of the wave.

Interference

This phenomenon oceurs for all types of waves —

for example sound, water waves and elect

g vaves (B, wirovayes s 1o o0k

To simplify the situation our initial reatment

coniden cotinious wave, ke sound or waer
wes.

Interference occurs due to superposition of waves

- the resultant displacement being the sum of the
separne dipacements of the ndbidual ware
2.2 shows two sources S, and S,
e et vaves of he s frequency and
wavelength J and of approximatcly the same
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Fig. 122

amplitude. Regions of constructive _and
deseacie Inerference oxist, ALa gen point O
in the interference pattern

$:0-5Q=ni for constructive:
interference

$0-80=(n+4)i  for desmuotre
interfe

where n=0,1,2,3 ... This assumes the waves
from S, and S, sct off in phasc.
‘When waves from two sources arrive at a point in
phase there is constructive interference. If the

wes arrive out of phase there is destructive
interference.

Example 5

Fig, 123 shows two sourees X and Y which emit sound
of warele two sources emit in phase,
ind emit waves of cqual amplitude. What docs an
observer hear (a)at @ (b)at R-

Method

() Q is equidistant from X and Y, s0 XQ = YQ.
Thus

XQ-Y0=0
There is constructve interference at O, since the
o sets of waves arrive in phase. The resultant

Rasutar dapacemant, 0

Iterforence at @ betwoen waves from two sources

amplitude of the sound at Q s twice that due 1o
cach source acting individually.
O P

¥

iasm

FIg.123  Information for Example 5
(b) We must ind the path difference XR — YR.

Refer 1o Fig. 12.4. Using Pythagoras’ theorem, we
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Y 80—

asm

shoce variegh 4= 20m, Ther i deruthe
inertrene s R boctse the tvo st o vaves
arrive with a path e o out
of phase. The resultant xmp!viudc i
2er0,* s0 that an observer will hear nothing at R.

Answer
(a) A sound of double amplitude, (b) nothing.

Example 6
om——
* *
{ X ¥
som
Fi. 125 Iformation for Example &

YP=s0m
YP-XP=20m

@ For commuae intererencs YP - XP =k
wavelength / is given by n7 = 2.0

=2, j=10m. Clearly other (smaller)

o ot £ e s

(b) For destructive interference YP ~ XP =
Thus wavelength 4 s given by (n + )4

(n+3)3
20.

where n 0,1,2,3,

= 43m. Other
(smaller) values of 7 are also suitabie.

Answer
(a) 20m,1.0m, (b) 40m, $m.

Exercise 12.3

1 Referring to Fig. 123, suppose that source X is
180" out of phase with source Y. What docs an
observer hear (a) at Q, (b) at R?

.
.
% 7.0cm
s !
%

Fig. 0
and emit in phase. Calculate fwo possible values of
wavelength for which () constructive interference,
(b) destructive interference would occur at point P.
Method
‘We must cakulate the path difference YP — XP. Using
Pythagoras’ theorem.

YP =3 aa

B

This froes any difience in amplide of th s which may
et e R ke o X ¥

100

Fig. 126 formation or Question 2

Fig. 126 shows two identical microwave sources X.
and Y which emit in phase. There s constructive
interference at C, which is on the perpendicular
Vet of the foe XY and X0 fom P te
midplon of XY. A detoor moved rom

i N o e o i 3 B 1
D= 70em el the lengih of ihe
‘mictowaves emitted by X and Y.
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Fig. 127 Diagram for Question 3

X and ¥ i Fig. 127 are two idential sourcs of
sound which cmit in phase. Calculate the largest
two values of wavelength (cxcluding = ) for
which  (3) constructive,  (b)  destructive
interference will occur at Q. If the velocity of

calculte the frequencies
0 which these wavelengihs correspond.

-SSP A
Fig. 128 Diagram for Quoston 4

X sad ¥ in Fig. 128 e o entn s of

Sound which emit in phase. Calculate the lowest
Dot vt of fequenes o he sources or
there 1o constructive, (b) destructive

interference at Q. (Velocity of sound = 340ms™")

Young's double-s|
arrangement

Fig. 129 Young's double-sit amangoment

Fig. 129 shows the set-up. The dark and bright
fringes arise due to_the interference of light
emerging from two slits S, and S,. In order that

the sources S, and S, are coherent (ic. phase-
linked and of the same frequency) they must
receive light from the same point on the source -
this is ensured by diffraction of light at the single
lit.

‘The fringe scparationy, in metres,is given by

- a7

where 4 s the wavelength of source, in metres, D
the distance, in metres, from slits to fringes and a
the slit separation, in metres.

Example 7

In a Young's doublelit cxperiment, mercury grecn

light of wavelength 0.54m (0.54 x 10 m) was used

with a pair of paralle slits of separation 0.60mm. The

fringes were obsrved at  disance of 40cm from the

sits. Calclat th ringe separatior

Method

We e i-0sic o,

D =040, Using Equati
o

D _ 05410 x 040
@ = 060107

a=060x10" and

=036x10"m
Answer
Fringe separation = 036 mm.

Example 8

In 2 Youngs arrangement green
‘monochromatic h.m ol chlcnglh 0.504m was used,
Fi inges were found 0 osupya disaneeof A0

i earen [

umk)xmknlly) @ red light
e 9y st sepration e a0t

s creen distnce was doubled

Method

v ingsoxcupy L0 So e inge seprion

4005 =0 80m

(8) We sce from Equation 127 that for fixed D and a
value, yocj. I 7 inresses by a_facor_ o
0651095 (0010 = 13, then vl

crease by a factor of 13, Thusy becomes
13080

1L04mm

®) For ghen 4 14 D ks yocts So f «
doubled, y becomes halved. Thus

050 %080 = 0.40mm
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(©) Forgiven /. and a valuesy x D. So if D is doubled,
 is doubled. Thus y becomes 1.6

Answer
(@ Lomm, (b) 040mm, (c) 16mm.

Exercise 12.4

Ina Youny's dowloalt cpeinent, s gt
i wavelength 059 x 107"

from the dowble slits, calculate the  fringe
separation.

In an cxperiment wing Young's s, s finges”
were found to occupy 3. ed at 4
tanc of S6cm fon th. double e, 1 the
waelength of the light used is 0.59um, calculate
the separation of the double sits.

0. monochromatic ight of wavelength
double-sit

e
070um s vsed

finge spacing if (ndependently)
(@) yellow light of wavelength 0.60 um i used:
(b) the slit separation becomes 0.30 mm;

30mm and the slits-
is doubled.

© e ,m eparat

Formation of

nodes and of adjacent antinodes is /72, where  is
the wavelength of the progressive waves from
which the stationary wave s formed.

oo o rorosie w0 gt o
i o v s erpin

Fig. 1210 _Formation of astationary (standing) wave
the ragion betwoen two sources of progrossiva waves.

Example 9

Two loudspeakers which are conneeted 1o the same.
oscillator face cach other and are scparated by a
distnce o shout 3m. A snall mieophone, placed
approximatcly midway along the line between the
gl munm of miimum
intensity, which are scparatcd by 42em. 1f the
oxcilatr s se o 4 frequency 0RH, calculae the
speed of sound in air.

Method

Statonary (sanding) waves o 5 el of
interference between progres of the
dame requeney and winclength ravelling along
the same line. They may be formed due 10

separate
sources, as shown in Fig. 12.10, or alternatively,

due to interference between incident and
reflected waves (see Example 10),
If the two progressive waves which form the

pressi
stationary wave have equal amplitude r, then the
nodes, which are positions of permancnt
destructive interference, have zero amplitude.
“The antinodes, which are positions of maximum
constructive interference, have amplitude 2r. As
shown in Fig. 12,10, the separation of adjacent

[ ———
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a conveniet distance, but is irrelevant in s0 far as

from the two sources will be about the same, so the
nodes can be more accurately located.

The nodes are 42em apart. So 172 = 42em, hence
wavelength i = 8.4cm = 8.4 % 10~ m. Also we know
frequency f=40x 10°Hz To find the speed of
sound ¢ we use Equation 12,1,

0% 10" 8.4 107
= 3%6ms

Answer
Speed of sound = 0.34kms '

Note that the wavelength J and speed ¢ relate to the
progressive waves which make up the stationary
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Example 10

A microwave transmiter is aimed at a metal plate, as
shown n Fig. 1211,

Microwave otector

Mot

Fig. 12:11  Informaton for Examplo 10

(a) A small detector, moved along the line XY, travels
I from the first to the cleventh

nodal - position.  Caleulate  the
frequency of the microwaves emitte

(b) The detector s now fixed in position and the metal

o) Calt the sparaton of wlcent s
along the line joining the two loudspeakers.
(®) A small mj moved at constant speed
ong i v, record a signl whieh varics
periodically at S0Hz. Caleulate the specd at
which the microphone moves.
Assume that the specd of sound is 340ms”

2 A source S of microwaves r-m 1 deteior D. A

metal reflecting screen
it plane pevpzndnllar © m< tnefom 510

wway from D,
e veecon i Sk 2 i

ot ween the
i Coose . waviegin
frequeney of the microwaves  Asume
(—Jﬂxw‘

y waves in

plate is

8 o of 2z s wtat he deetr
A S e sped of et wevesis
30x10'm

Method

(a) Between the first and eleventh nodes there are ten
hullkuv:l:nllhs. The 1042 e, 10

28em =28 10 m. We are

y\!nxpendr a0 it the frequency

we rearrange Equation 12.1

i
T e ey n
second a 28em ‘lengih’ of stonary wave il
puss the detector, which wil thus. observe
(285 1.4) = 20 nodes and 20 antinodes.
Answer

(@) 11x 10" Hz, (b) the  detector
ive masinua, followed by minima,

observes 20
each second.

1w
separated by a distance

oupesten facx exh b mu are
et o e v, o, iy
S fequency of 800

“Elcric feld nde

strings and wires

‘When a string or wire which is fixed at both ends
is plucked, progressive transverse waves travel

slong th srin or wir and e reflcted at it

which has the largest wavelength and hence the
smallest frequency, and the first two overtones.

0 Pt B L
s

® 1sovetone: i, oL
g ramone)

[Ep——

Tratamene)

Fig. 1212 Stationary waves in a sting or wire fod at
both ends.

Now the speed of transverse waves alon
riched ttmg orwire & given by Euation 134

103
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Sy,

where 7 is the tension and m the mass per unit
length. Thus the wavelengths and frequencies of
the stationary waves in Fig. 12.12 are as follows:
Table 121

a24)

T Mode Wavdlength  Frequengy
Fundamental 4= 2L

Istovertone =L

2nd overtone =i > \/5

Note that f; = 2 50 the firs overtone s the second
harmonic, and f; =

third harmonic.
cente, only even harmonics (20d, 4th and 0 on) can
occur.

Example 11

tal string s stretched between two points

Giance 050m pare T temion i he s s ON

and its mass is 45g. Caleulate (a)

transverse waves alm

Vovlengts and fequencics of

frequency modes of vibration f the string. (¢) Explain
our answer 1o (b) would diffe if the string is held

Tightly at its centre position.

Method

0 To fad e sl c e e Equaion 124, with
ndm = (45 x 10°)

(b) The fundamentl has wlv:lmgm h=
s frequency ; i given b

A= 16m

W

=L =080m

=126 isee

Aliernatively, we could use f2 = 2 (see Table
121),

104

The second overtone has wavelengih
iL=055m
s frequency f, i given by

Allernatively we could use f; = ¥ (see Table
121).

(€) 1f the string is held lghtly at the centre, then only
even harmonics are possibl, ic. those with the
following wavelengths and frequencics:

20d harmonic

th harmonic

Jo= 4, =316He

L

6th harmonic 7

/‘,f,f. =47 Hz

27m

16m, 080m,  0S3m.
Hs, 06kHlz, 024kHe.
© Even pamonics ol 3 dealed st

Example 12

‘The fundamental frequency of vibration of a stretched
wite s 120Hr. Cakulate the new fundamental
frequency i () the ension in the wire i doubled,the
length temaining constan, () the length of e wire s
doubled, the tension remaining constant, (c) the
tensionis doubled and the length f thewire  doubicd.
Method

I Table 121 we se tht the fundamental frequency i

isgiven by
1.jr
wm

For 8 panicuas wis the s pet it eogth m i

azs)

0 For s conankngh . ad o 3 concnt m we

m Equation 128 tha f, x V. Sinee the

{enson dousles, the pow fndumenial Gequency
J1is V2 times the original. Thus

fy= V2 120 = 10tz
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) For s congant esion 7 and or  costantm
e from Eaqution 128 that , « VL. Since e
Teneth doubis, th new ndamenal freqency
74 is il the original, .

(©) For a constant m quulnm 128 tells s that
o/ e e doublsand the kg
new fundamental frequency ™,

2 e gl T

120 = 849Hz

Answer
() 170Hz, (b) 600Hz, (c) $49Hz

Exercise 12.6

1 A bl o nud length 050m and mass
is subject 10  fixed
eacon ot SON. Find the wavelengths and
(soquences o thethee lowes lqueny maden
tion when the wire s (a) free to vibrate at

" mldpuum ) ighy bld at 2 midpoit.

of crosssectional area D mmnﬁ and ll\nl:
80 10° wbject to

wave
(@) the length of wire which, when fixed at its
ok o e gy of 10
Note: Mass = Length x Arca x Densi
The findamenal tequncy of vbion of 2
wreched wire is 150Hz. Caleulate the new.
fondamental requency f (3) th tension i the
s tipied, the length remaining constant,
(6) the length of wire is halved, the tension
remaining constant, () the tension i trpled and
ength of wire s habvd

Stationary waves in pipes

‘When an air column is made to vibrate at one end,
a progressive longitudinal (sound) wave travels
along the air column and is reflected at its end so
that a_ stationary longitudinal (sound) wave is
formed.

Fig. 1213 shows a ‘closed or ‘stopped’ pipe,
which means it is closed at one end. The
fundamental and the first two overtones are
shown. Let ¢ be the speed of progressive sound

i
(16t harmonic) +
=

O<>< & 200 avenone: 53t
o ¢

PR —R

Mot hat a node et i e cosed and and an antinode st e
opanend
Fig. 1213 Stationary waves ina ‘closedpipo

vaves in air at the particular temperature. The
wavelengths and frequencies of the stationary
waves in Fig. 12.13 are as follows (Table 12.2):
Tae 122 Closed pipe

Mode elength  Frequency
Fundamental P

Istovertone

2nd overone

Notetha : = ¥, s that the first overtone i the hird

harmoni dn i, 50 that the second overtone is
the fith harmonic.

Example 13

A dosed argan gl i o lngth 0580, okl e
ymclngls and fiequendes of the e loves
froueneymodes afviraion Take the )p«du[mund

Method

The pie bas lngh L = 0590m, 1 the speed of
soundc = 340m
According 1o Table 122 the fundamental has
wavelengen 1 = AL = 272m. It frequency ; & given
by

== 3= sk
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‘Similarly the first overtone has wavelength
Jy=ALA = 0907m
and frequency f; givea by

375Hz

Alternatively we could use /; = 3, (see Table 12.2).
The second overtone has wavelength
y=dLs=05Hm

and frequency f; given by

Alternativly we could use f, = 5f; (sce Table 122).
Answer

‘The wavelengths are 2.72m, 0.907m and 0544 m with

Exercise 12.8:
Examination questions

1 Awave has a wavelength of 6.0m and a frequency
of 2.5 Ha. Calculate the wae-velocity.

2 Water waves moving across the surface of a pond
\rve  dsane of e in 0,105, The horisontl
distance between a erest and a neighbouring trough
s 2.0mm. Caleulate the frequency o the waves.

3 (3) Descrive the bebaviour of the particles in
stretched cord during the passage of a
transverse wave.

() A large explosion at the Earth's surfuce
ety o v, compressional vave (P)
with a speed of 6.0kms
) i 2 )ptnl of 3.5kms

surface of the
scnmnlopcnl o vhere the e arhe

frequencies 125 Hz,

Exercise 12.7

(Assume that the speed of sound is 340ms ')

1 Calculate the length of a closed pipe with
fundamental frequency of 250 Hz.

2 Al vertical eylinder is flled with water and a
quency $12Hz is held over its

“The water is slowly run out. Calculate

the posiion of the water level below the open

end when () first resonance and (b) second

resonance are heard.

Anorgan i, of lngth 000, closed ot one
end. Caleulate the valucs of the two
resonant frequencies of the pipe.

PR—
\

=0

Fig 12.14 _ Diagram for Question 4

A small Toudspeaker is mounted at one end of a
e ot dhovn b Fi. 1214, the oher end of
which s cred, The Iodipaier i comneted o
a signal generator of variable frequency an

frequency is gradully increased. The Toven
frequency which will cause the air in the tube 1o
resonate i ZIKIHL. Calans the o of the

next two resonant f

106

Chllme. e dntanes mesmaed skng the
Earth's surface, between the scismological
staton and the st of the explosion.

(OCR 2001)

4 The specd of sound in seel is 5.1 x 10°ms™. If
1 has o density of 78 x 10' kg™, cakulate

ts Young's modulus.

Incld Hollwood Wesernfims e uiws woud

with thei ears o the raibway
ok i fo  approschin wan

(@) Caleulate the speed of sound in the metal

riivay trac
(Young modulus of stcel
densityofsee

(b) I the train produced a sudden noise on the

6 (2) () State how the variation of amplitude with
distance from the source differs for
ressive wave and a stationary wave.

(i) State how the energy flow differs for a
progressive wave and a stationary wave.

"=

A transverse progressive wave is traveling in
the x-direction. Graphs of displacement, ,

saracson
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and frequency f; given by

Alternativly we could use f, = 5f; (sce Table 122).
Answer

‘The wavelengths are 2.72m, 0.907m and 0544 m with

Exercise 12.8:
Examination questions

1 Awave has a wavelength of 6.0m and a frequency
of 2.5 Ha. Calculate the wae-velocity.

2 Water waves moving across the surface of a pond
\rve  dsane of e in 0,105, The horisontl
distance between a erest and a neighbouring trough
s 2.0mm. Caleulate the frequency o the waves.

3 (3) Descrive the bebaviour of the particles in
stretched cord during the passage of a
transverse wave.

() A large explosion at the Earth's surfuce
ety o v, compressional vave (P)
with a speed of 6.0kms
) i 2 )ptnl of 3.5kms

surface of the
scnmnlopcnl o vhere the e arhe

frequencies 125 Hz,

Exercise 12.7

(Assume that the speed of sound is 340ms ')

1 Calculate the length of a closed pipe with
fundamental frequency of 250 Hz.

2 Al vertical eylinder is flled with water and a
quency $12Hz is held over its

“The water is slowly run out. Calculate

the posiion of the water level below the open

end when () first resonance and (b) second

resonance are heard.

Anorgan i, of lngth 000, closed ot one
end. Caleulate the valucs of the two
resonant frequencies of the pipe.

PR—
\

=0

Fig 12.14 _ Diagram for Question 4

A small Toudspeaker is mounted at one end of a
e ot dhovn b Fi. 1214, the oher end of
which s cred, The Iodipaier i comneted o
a signal generator of variable frequency an

frequency is gradully increased. The Toven
frequency which will cause the air in the tube 1o
resonate i ZIKIHL. Calans the o of the

next two resonant f

106

Chllme. e dntanes mesmaed skng the
Earth's surface, between the scismological
staton and the st of the explosion.

(OCR 2001)

4 The specd of sound in seel is 5.1 x 10°ms™. If
1 has o density of 78 x 10' kg™, cakulate

ts Young's modulus.

Incld Hollwood Wesernfims e uiws woud

with thei ears o the raibway
ok i fo  approschin wan

(@) Caleulate the speed of sound in the metal

riivay trac
(Young modulus of stcel
densityofsee

(b) I the train produced a sudden noise on the

6 (2) () State how the variation of amplitude with
distance from the source differs for
ressive wave and a stationary wave.

(i) State how the energy flow differs for a
progressive wave and a stationary wave.

"=

A transverse progressive wave is traveling in
the x-direction. Graphs of displacement, ,

saracson



against time arc given below for two points in (i) The _information _obtained from  the
the path of the wave, monitoring station is limited o
P

x-000mo

of stations required? Explain your answer
g with the aid of a diagram. - [CCEA 2000

x=010m0 8 (@) A transverse wave is pasins trougs 3
ima medium. Fig. 12.16 is a showing the
variation of displacement x e or
(i) Deduce from the graphs particl of the medium.
(1) the frequency of the waves, -
(11) two possible valuesfor the waselength,

(ii) Use one of your wavelength values from
720 ) sove o bt 8 pomble
we speed. WIEC 2001]

7 @) A e vave puses hrough s ey
 speed of propagation of the ware is

o g TS s o the
displacement s of a partice of the medium as =

a function of time £ P 1247

) OnFi 1216 e
e amplitude A,
2 dw period T
of the wave
(i) On Fig, 12.17,sketch a graph to show the
Fig 1215 ariaion of the diplcement  with ime
for a wave of equal amplitude and the
(i) Using information from Fig. 12.15 deduce .
e "0 poa 2 the ;-;,";:;m el
e Fig. 12,17 are the same as

(0 Coi b et of he v gyl
8 In » spifed destiption of an etk T I D
ok ! S5 (®) Two different sinusoidal f the

muluh b= 3 point st The e e of
es and Savaves. Pavaves

o250t the e, A ol P i he ‘mediam

", and
Swaves with a constan speed of 5.6kms”. by cach v
Following a _particular _carthquake, 3 Table 123, which is mmmpleln, gives some
; v Tanie
() et the ditance of thesoures fhe to complete the blanks in Table 123.
carthquake from the monitoring station. [CCEA 2000]

Table 123 ntormation for Question 8(5)

wave frequency  period phaseat P
Sz P mw 0001 s aert
Py /degrees
T 30 132 0
2 o 360
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ALEVEL PHYSICS

9 A progressive transerse wave has a frequency of
050kba. Ifthe least distance between two points
which hae & phase diffrence of =73 is 0.050m,

calculate the speed of the ware.

In Fi 218X and Y ar o gecrtors ofwaes

waves of wavelength_0.50m.

Fracrton, whea spérsing 0 i ove, prodoces

waves of amplitude 60mm at P, which s 200m

from X.

[ ——
¥ %

Fig. 12:18 Diagram for Queston 10
i the amptde of the e dubancs 1
the generators X and Y are operating
o »mu, i oo pnm
11 (8) State the principle of superpositon of waves,
®) Monochromatc gt rom

g, shch s pedeety Symmeral
oou i e 0.
N
sl %8
P H
| PR
Fig. 12.19

() The light rom it S, and S i sad o be
coherent. Wha is meant by cohereat in
this context?

(i) In Fig. 12.19, A is a point o the screen
where constructive. interference occurs

from S, and S
destructive

observed on the screen at these poiats.

108

il For the fringe patiem observed, write
down  the  cquati

relating  the
wavelength i of the light to
quantities d and a. ldentify any other
symbol(s) used.

(iv) The separation a of the sft is 0.80mm
and the distance d between slits and
sercen is 36m. The slits are lluminat
with lght of wavelength 4.4 < 10°"m.
(1) Caleulat the fringe separation.
(2) A point C on the screen is 9.9mm

awsy fom the central bright
fringe at O. Show that a_bright
fonge 5 formed a1 C. Espl

your worki
© How fe hqmd € would the pext
[CCEA 2001]
12 Light of w-\v:l:n'lh mnm.. flls on a
forming fringes 3.0mm apart on & screen.
What e spacing when light of
‘wavelength 300nm is used and the it separation

i of lits,

A07Smm B 15mm € 30mm D 60mm

[OCR 2001]

12 Fip 1220 shows 12 amagement fo observing
tents fringes from two.

inctrt ot
ek

i 2| fosomm
v

Fig. 1220 (ot to scale)

The incident parallel light i @ monochromatic
beam ofwavlength 4800, The tvo s A ad

The srcen s sred  ditance 200m o h

it

(3) Make a sketch of the interference pattern
which you would expect (o observe on the
screen. Explain why the pattern has bright
and dark regions.

(b) Caleulate the  spacing between  fringes.

rved on the screen.

(€) How would s the pattern to change
when, separat
0 the ngm sam« s changed 10 one of

600

iy e \pltmg is increased to 0.50mm,
(i) the slits A and B ae each made wider?



0 @ Calli the valeagth i g of
index 1.50 of lmm it b
wlvelen‘m 4500m in air.
Athin wedge of the glass i now introduced
50 that it gradually covers sit A, but not slit
B.The armangement is shown in Fig. 1221
Suggest how you expect the patter (0
change as the wedge is introduced. How
the centre

Fig. 1221 [OCR spec 2001]

14 Figure 1222 shows a standing wave set up on a
wire of length 0.57m. The wire is vibrated at a
frequency of 120 Hz.

L KD

os7m

Fig. 1222
(8) Calculate the speed of transverse waves along
the wire.

(©) Show that the fundamenial fcquncy of e
[4QA 2001]

5770 e o o Rl sty

icked wire of length 1.00m is 256 Hz. If the

e i shortened by 00m, whit Kept a the

same  teasion, calculate the new. fundamental
frequency.

16 The diagram shows an electron-microscope image.
of the world's smallest guitar.

o sings e o legth of 10 millonehs
(10 10°) of a metre. They have a widih of
about 50 billionths (50 x 10°) of a metre ~ the

Authors it 1= = 3 e Chaeer 14

47 sqpcoioioly 00 ows: Pdkeg

audible frequency of mpm.mlcly
IMHz The gl vas made by reenches 0
Comell University with a single silico

this nny ,u.m is a playful
nanotechnol

erystal;
puel- g

@ () Exlin ey why o i sog
eses  ound
Comment

asc “the inaudible

froqueny of spprosimaily 10MIe"

(6) (i) When the string of this guitarvibrates at
its fundamental frequency (10MHz).
what is the wavelength of the waves on
the suring? State one assumption your

are making.

(i) What i the speed of the waves along the
sting?

e the tensio
[Edexcel $-H 2000]

(i) The sting has a mass per unit length of
4% 10 kgm
in the string.
17 Stationary waves may be formed with light. A

narrow beam of monochromatic light s incident
normally on a mirror, and is reflected back along

edbeams
aktey e, whh ot th et o the
mirror, as shown in Fig. 12.

ncidertsna
tecied ays

Fig. 1223 (noto scale)

(a) For light of wavelength 450nm, what is the
distance x between adjacent antinodes of the
stationary wave pattern (Fig. 1223)?

6 Its poutble to demonsrt the formatin of
the antinodes by a thin, transparent,
Photographc fim a1 8 very smill e 0 to
the surface of the mirror, as. sh

109
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Fig, 1224, When an anunml: occurs at the
lackeni

m of parale] dark lincs is obtained on
e e g 1225,

How docs teswtet del:u when the air

in the tbe s

) Usng th bove dta bt el for
e speed of sound in the air in the tube.

(b) The student then turns the dial of the signal
generator 10 a higher frequency range, and
detects another resonant. frequency at

reading of 900 Hz.

() Show that the wavelength in air of a

f this frcquency is 0.37m.

(i) Fig. 1227 is  sketch of the tube used in

p A

@ (0

Fig. 1226 (notto scale)

Fig. 1225

(ot to scale)

Tn such an experiment, the wavelength of the.
light used is 450nm. The flm is sct an angle
90f43 % 10 degrees o the

ke o the prosad i (P
1225).

(i) Describe would_happen 1o the
pattern of o f e angle between the
flm and the mirror were increasey
[CCEA 2001, part]
8 A saent e out the (cong expericent o
determin e specdofsound

tube. o o a1 one e, s set up

vith o s Somal ]mmspnkn fscing the open end
The loudspeaker is connected to

generato. Tne arrangement s shown i Fi, 1 3

L —

aom

Fig. 1226

The student gradually increases the frequency of
the generator, from a very low

vae, il the couma of ai in te b fint

resonat rs at a reading on the signal

Senerator of 1801z

110

Fig. 1227

On Fig. 12.27, mark the positions of the
nodes and antinodes of the vibrations of
the air partiles in the tube when the air
column s resonating at the (requ
900Hz. Indicate nodes with the letter N,
and antinodes with the letter A.
(CCE/

A 2001]
19 () () State the difference  between
ssive wave and a stationary wave.
(@ State tw of the condion which st
250l f ooy wave i 10 b fomed
from two progressive waves.

(b) A vibrating tuning fork is held over the open

a pipe, as shawn in Fig. 1225,

——

ning ok

Fig. 1228

Theloverendofthe pipe
venica ylnder The p1p=lm‘i nin ok
e Siowty rased il & Gaooary waee I

Gotaind o the frs posiion of esonanee




() On Fig. 1225, sketch the wase pattem aic cohmn which Wil g the ft
for the first position of resonance. of resor

Indicate the positions of any nodes and (i Toe turing fok s relacd th ne of
antinodes |v, the letiers N and A frequency 480 Hz. How far, and in what

@ e !Kquem‘/ o o tuning fok & 0 (ivu\n m first position of resonance

specd of sound in air for this [CCEA 2000)
fighic - bk ength of the
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Diffraction and

grating

Diffraction

‘When waves pass through an aperture or meet an
abstacle, the waves spread 10 some extent into
region of geometrical shadow. This effect is
Calculations ~are ~ usually
restricted to:

(i) the transmission grating

i) the limit of resolution for optical instruments

The optical diffraction
grating

A transmission grating consists of many parallel

equidistant sits of width and spacing of the order

f the wavelength of light. If plane waves

(parallel light) are incident on it, then, by
ition of the secondary

s s y wavelets from
cach slit, it can be shown that a_ transmitted
wavefront is formed only along a few specified
dircetions

If the incident parallel beam is at normal

lence (see Figs. 131 and 132), then
emergent parallel beams are seen only in
directions such that

dsing =nA a3

where d s the spacing of the lits,
the order of diffracted bea, / the wavelength of
incident light and 6 the angle of difracted beam to
the normal.

‘The following examples involve use of Equation
131

12

the diffraction

acson grang oy 4 s showr)

oy

Fig. 13.1 _Acton of the difraction grating:formation of
ansmitied wavetronts.

Fig. 132 _Acton of the diffraction grating showing.
dsind = nx
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DIFFRACTION AND THE DIFFRACTION GRATING

Example 1
‘Monochromaticlight of wavclength 600 nm i incident
normally on an optica transmision grating of spacing.
200,m. Calculate (3) the angul

‘maxima; (b) the number of difractcd beams
be observed: (c) the maximum order possble.
Method

We are given

which can

600 x 10

This gives sin), =
i) forn=2

(i n:3y\:ssinﬂ,fﬂ9.urﬁ‘
(@) =4 gives ipossible
e Chnp!u 2y s the fourh order s not
() Fig. m is @ schematic digram showing th
Pl o the vxices masiea. Not ta fm'
n=0 (the zeroth order) Thus
diffracted maxima are observed.

=3 g orden
= 2 (second orse)
et st orden

=0
e
=1 (st ot

oraing \ 0" "1 2 second e

LERT
Fig. 133 Angular disiution ofdifracted beams
(©) This has been conered in part (a), which shows
that since n = 4 is impossl maximum
order is 3. A quicker way 10 00 this is as follows:
sin0<1
From Equation 13.1,sin0 = ni/d. So

i
<!
d_200x10"
o acd=200x00 sy

n<33
Since n must be an integer its maximum value is 3.

Answer
(8) The angular positions are
75

n=3 2
Note the trivial case of 0 = 0 for n
(1) There are seven diffracted beams.

(€) The maximum order is

Example 2

Light mnsunnl ol w-vzl:ngl)n 420nm and 650nm is
incident_norm: nsmision_grating of
5010 e Caclte e gt parsion
of the wavelengihs i the scond-order spectrum.
Method

“There are 6.0 x 16 lins per metre of grating, So the
srtingspacing i given

] = 1666 10m

R
500 10
Using Equation 13.1, for the second-order spectrum
(n = 2) we have

(@ fori=420x10"m

Fig. 134 Angular separation as n Example 2

A st dagram of the aion i i in

Fig. 134, The angular separa

-0 =513 - 303
Answer

20

‘The angulas separation in the sccond-order spectrum s
210

13



DIFFRACTION AND THE DIFFRACTION GRATING

Example 1
‘Monochromaticlight of wavclength 600 nm i incident
normally on an optica transmision grating of spacing.
200,m. Calculate (3) the angul

‘maxima; (b) the number of difractcd beams
be observed: (c) the maximum order possble.
Method

We are given

which can

600 x 10

This gives sin), =
i) forn=2

(i n:3y\:ssinﬂ,fﬂ9.urﬁ‘
(@) =4 gives ipossible
e Chnp!u 2y s the fourh order s not
() Fig. m is @ schematic digram showing th
Pl o the vxices masiea. Not ta fm'
n=0 (the zeroth order) Thus
diffracted maxima are observed.

=3 g orden
= 2 (second orse)
et st orden

=0
e
=1 (st ot

oraing \ 0" "1 2 second e

LERT
Fig. 133 Angular disiution ofdifracted beams
(©) This has been conered in part (a), which shows
that since n = 4 is impossl maximum
order is 3. A quicker way 10 00 this is as follows:
sin0<1
From Equation 13.1,sin0 = ni/d. So

i
<!
d_200x10"
o acd=200x00 sy

n<33
Since n must be an integer its maximum value is 3.

Answer
(8) The angular positions are
75

n=3 2
Note the trivial case of 0 = 0 for n
(1) There are seven diffracted beams.

(€) The maximum order is

Example 2

Light mnsunnl ol w-vzl:ngl)n 420nm and 650nm is
incident_norm: nsmision_grating of
5010 e Caclte e gt parsion
of the wavelengihs i the scond-order spectrum.
Method

“There are 6.0 x 16 lins per metre of grating, So the
srtingspacing i given

] = 1666 10m

R
500 10
Using Equation 13.1, for the second-order spectrum
(n = 2) we have

(@ fori=420x10"m

Fig. 134 Angular separation as n Example 2

A st dagram of the aion i i in

Fig. 134, The angular separa

-0 =513 - 303
Answer

20

‘The angulas separation in the sccond-order spectrum s
210

13



CALCULATIONS FOR A-LEVEL PHYSICS

Example 3
White lght which has beca pasd through a certain
filer has . range of wasclengths from 450nm to
T000m. 1t s incident normallyon  diffracton gating.
Show that fthere e sccond: and thirdorder spectr.
they will overlp.

Method

For any particular grating the angle of diffraction, for o
henorder, s greater for e konger wvlengh, This

isscen by rearranging Equa
A
sing="% 132)
Thus, for s given d and s value ind) x
We must therefore show that the second-order e

(700 nm) has a higher 0 value than the third-order bluc
(4500m). For the given grating the d value is constant,
jon 13.2 becomes.

sind = Constant x ni

For 7y = T00nm in the second order (n = 2)
Constant x 2 700 x 10

= Constant x 140 x 10
For i = 450 am in the third order (
Constant x 3% 450 10
= Constant x 135 x 10

sint)

sint

Since sind, > sin s, then; > 6. So the second order at

Exercise 13.1

at is the wavelength of light which gives a
frstorder maximum st an angle of 22°30’
when incident normally o0 4 grating with
600 linesmm "

2 Light of wavelength 600 is incident normally
a diffraciongrating of width 200mm, on
which 100 x 10" lines have been ruled. Calculite

he angular positions of the various orders.

3 A source emitsspectral lins of wasclength S89nm

arder for each of the wavelengihs,

4 When s certain grating i illuminated normally by
‘monochromatic light of wavelength 600nm, the
firstorder maximum is observed at of
2L 1 the s g s wem Ut with
light with waselength from S00nm to 7
find the angelar spresd. o e Fesorser
specirum.

Diffraction at a single slit

waves when they are restrcted

by an aperture, such as a single sit, leads o a
pattern consisting of alternate bright and dark
fringes as shown diagrammatically in Fig. 13.6.
The angular positions 0 of the minima in this
diffraction pattern are given by:

sin 6 = "7‘ 133)

where ;. = wavelength of light used, w = width of
slitandm =1,2,3...

Example 4

Fig. 135

Tight (upper halfonlyis shown)

Fig 135 & o whematc duynm of the i h;m

diffraction spestra cal grating. The

pread m 3 ghen orget, . the i ¥

depend pon the grating spacing. Homever, the

second-and i and Wigherorder pec (i prosen)
il abvays overlap with each other as discussed

14

Laser i

rectangular slit of width 0.130mm. The resulting

diffacton partern i viewed on a sereen placed 300m

from the i Calculte:

@ he disanc beven te cenre of the it
masimum and the first m

(b) the widih of the centeal maximum.
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DIFFRACTION AND THE DIFFRACTION GRATING

. Cowm

— P

T ez
—
oty
Sereen
Fig. 136 Diffraction ata single it

Method Thus, distance d between centre of central

‘maximum and first minimum is given by:

(@) Referring to Fig. 137 we have:
Pl =300 %500 107

wavelength 1 = 650 x 10 m Ty
width of slit w = 0.130 x 10~ m where L. = distance from sit 10 sereen (= 300m)
and m=1 0) The widh R f he cenralmaimu s he disiance

From Equation 133
b side ofthe conral s, Thus

R=2=2x150% 107
05107 m

Sinfy=1x 2

Since sind, is very small (see Chapter 2) then
0y = siné. Thos Answer

0y =500 107 rad (= 0286 (@ 150mm, () 300mm.

Frst iy

Fig.13.7 Diagram for Example 4

27) between the w0 first minima (m = 1) on
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Fig.

7
7
I

iz

ig. 138 shows light from two separate point
sources S, and S, entering an optical instrument
in directions separated by an angle 0. Diffraction
at the entrance 10 the instrument ~ which has an
aperture of size (1. diameter) ¥ ~ means that
the images of the sources arc broadened.
According to the Rayleigh criterion the optical
instrument cannot distinguish (ic.  resolve)
between images of S, and S, which are less than
an angular distance 6 apart, given

At szo W
Fig. 138 Limitof resolution

sin = AT 134)

‘wavelength of the light emitted by the

Since 0is usually small we have (see Chapter 2):

sin0 =02 AW 3%

where 01s in radians (see Equation 2.15).

Example 5

“Two it sources ofght are placed 12
coi Tt of cengh Q. e
maximum disance at which the o sources can ustbe

distinguished by an observer with an eye pupil
diameter of 4.0mm.

Method
Pusi. e 40
r=1zmm 7
T e——t———

Sy, for o cieudar sper,sind - | 2.

116

lue of 6,and he
Of L, for which the two Sources separated by a distance
F=12x107m can just be distinguished. We use
Equation 135, in wich e amue i sl Sice
60 10 1 m we have:
02 W =060 % 10°/40 x 107

015107 rad

For smallvalucs of 0 then
L=r/i=12510°/015 % 107 = 80m
Answer

S0m (approximtcly)
Exercise 13.2

1 Calulste the angular widih of the central
s i el Heh of gt 00m i
incident on a singe st of wi
@ 010mm  b0tomn

2 A el beam of e monochromat gt of

the diffraction pattern 10 the first minimum.

Caleulate the value of 0 for o human eye with
pupil diameter of 5.0mm using light of waelength
0.45 .

& An observer can just distinguish between two poi
Sourees of ight o+ ditance of 10km. 11 the
hienver canjost disinguih bewcen rays of light
with an angular separation of 20 x 10-*
calculate the separation of the two poiat sources.

S The Mount Palomar telescope has a resolving
power such that 0= 010t Asumig i
relates 1o li from 4 sou

vavlengih 00m. exe the damores u[ me
receiving dish of the telescope,
dish acts as the aperture for dif

mn)

Exercise 13.3:
Examination questions

1 Aditrcion grating s paing of 16 x 10
A boam of ligh s inodent normaly on

grating. " o et

20" ith the wndevited beam.

um makes an ...ua
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DIFFRACTION AND GRATING

‘Wha i the wavelength of the incident light?
A 2100m B 20n0m € 420nm D 550om
{OCR 2000

2 I the socrm o the clement sontm e
a red line, wavelength 600

Bluc light of wavclength 480um s incident
normally on a diffaction and is split into
 number of beams as shown in Fig. 13.11

If the angular separation of the sccond order
beams is 46", calculate the number of lnes per
‘millimetre of the grating.

When lght fron » swontiam socs is pused
e g rom 3 svonm souc b posed g mnm.m s et e e e
et whih o of A 1. e e nge. el by 8 dichurge L conining
degrocs, 1 which he ssond orde 1o fc i il o e,

A0 B c¥ DS P
[OCR Nuff 2001) Bue
3 Lt fom v dieren monchromtc s e Normal
is incideat on rating at_nomal ncdot o e
Eciene On o e waingin o S5tmm s
and gives a second order maximum i an angl of
323" 1f light from the second source gives oea
second order maximum ot an angle of 27.5' Fig.13.12
caleulae the wavelength of the sccond source. o b of g cdnt ol on e

4 Alasercmitsa e difracied
ditfaction grating, beyond which i curved white i s e i o . Thes emrse
screen as shown n Fig. 13.10 symmetically about the nommal 10 the grating

“The angle between the two red rays i 39.3, and
that between the two blue rays is 25.1%. The
grating has 500 lines per millmtre.
(8) Show that the wasclength of the red light is
656nm, and thatof the blue light is 435 .
(®) For cach colour of lght, determine How man
n of diffrction are  theoretically
bl [CCEA 2000, part]
7 A light source emits two distinct wavelengibs, one.
of which s 450nm. When ligh from the source is
incident normally on a difracton grating,
4 fourth or
Fig. 1310 (notto scale) light of wanclengih e same
(@) A tine of spots s observed on the sereen. i o ot 1ind vl imae o
Explain why there is more than one spot. the other wasclength. If the angle of diffracion
for cach image is 46', calulate (a) the second
® s belo ihe source, (b) the number
spots on the sereen. of lines per metre of the grating.
WMW‘S"‘ of red light = 633 am 8 The cmission spectrum of a certain clement
fumber o lines per mm on grating = 380 mm' conais st o wavclengs o e and o vl
ORI Sy Vg & e w5 5
s i hing 25 e e milimer, o
Second orer that & line at 19.88" contains both red and violet
Fratorsr tight
oot (a) AL what other angls, if ary, would lines
Frstoror containing both colours be found:
Second e (b) Idenify the line that occurs at the greatest
g raction angle. ic. find its colour, orde
G111 Wormaton or Gueatons ind the angle at which it occurs.

17
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A PHYSICS

{1y be el o koo L1t e sppesineie
values of the two wavelengths a

=700 m and s = 4 1077
[WIEC spec 2000]
9 A beam ofussound of wrclngh 014 i
incident normally on 4 slt of width 30mm s

shown in Fig. 13.1

o [ g oy

%;/_h\_L_....
= e o

Fig 1313 ilomaton orOuesion

(6) Show hat the difracion ange 0 for the it
iffaction minimum i sbout 005 raian,

) A small detctor s wed o sudy the
itcon e St e o
ifacion miimum 3 point D 38 shown,
i b e of he detecor rom
the centre li

“This question is about the diffacton of light by
srtings.

raction grating is made

extremely fine wire onto a frame (Fig. 13.14). The
wire is 0.1um thick and the gap between the
wires is 2.0

Frame
Fig.13.14

(3) Calculate the angle for the second order
masimum of the interference pattern when
light of wavelength 600nm i incident on the

grating,

& A sl raing s e it i of 105y

width of the gap is also

why  the sccond order
lh his gruing*

[OCR Nuf

(f 2000)

“This question is about a diffraction gmlmg

A dmmlwn g bas reulty
cach having the same width as the npq\w s
bemeen e e 1t mied by
monochromatic light of wavelength 5.0 x 10" m.

(+Author' int:calute the gt posion of h it i for

the singe i difction pasrn.)

18

0 Expsa why the second oter neterece
are missing. Support your answer
mathematcaly,

(801 the gratiog s 70 st per millimere
@ 00m, there are no. thind order

maxima cither. Explain why this is so. Soppot
your answer with appropriat caleulti
€ Exphin bt ot bapgend o e iy
crey crey which we might
o prad vobe i i i
(@ The
50

wavelength is  now
107 m. Explain what changes, i .
wil take place to the interference pati
[OCR spec Nuff 2001]
12 A panll beum of monochromat tght of
s inciden
0

the first dark fringes
o s b sparted by 6

13 A persor dngml:d:(ku(nnu aft
G can just diinguish between two lights o
thewings of an st a » distocsof 10k
the perso esoling power of 20 x
e et the S veeon e llghlx

14 @ et m-m- power as applicd 10 the

®) Uniereain ighting conditions,the diameter

of the pupil of another student’s eye s 6.0 mm.

() Two small light sources are  placed
40mm apart at one end of

distance from which the student can just
resolve the images of the two sources.

[} Thc sousae ten xvpllad by ancther
of sou

images of the two sources
[CCEA 2000, part]

15 The Arecibo radio telescope in Central America
has a reflcting dish of diameter 300m. When
radio signals of wavelength 21 cm the

able 10 resolve two radio sources

both at a distance of 1.0 x 10* m from the Earth.

‘Which one of A 1o D below s the approsimate.
separation,in m, of the two sources?

AN® BIY Cc10® D107

0K Nuir 2000



Section E

Geometrical optics

14
Refraction

Light, and other kinds of waves, can change
dieclon vhen 1y pam fron oo wedim to
another. This is called refraction_and
ecausc of  change i the apecd of propagaton
of wave energy.

Fig. 141 Refraction

Referring to Fig. 14.1 then:

iy

a42)

here = absoltorfrctve indes o medium |
(wave  pa i 1),
s refactive e o e s (wave
passes from air to medium 2) and 1, = refractive

index when wave passes from medium 1 to
medium 2.

Example 1

Fig. 142 Diagram for Example 1

Asshown in Fig. 14.2,a beam of light traveling through
water (absolute refractive index 1.3) is inci

fint glass surface at an angle of 30" and s refracted at
an angle of 24" Caleul

(a) the absolute refractive index of flint glass

(b) the angle of incidence for an angle of refraction of
30

(©) the refractive index for light passing from water to
fint glass

(d) the refractive index forlight passing from flint glass
towater,

Method
@ W:huwny = 24" and require n.
carranging. [quillun 141
my=my L3, sin 30 065
BTy Sin 2w T 0407

~ 160



pHYSICS

(b) We have n; = 13,m = 1.6,
Rearranging Equation 14.1:

which gives i = 35

o) s;m light now passes from glass fo water we
ire ., which i found from:

~os1
Note that 1y =1
Answer
@ 16, () 3, © 12, (@) 081

Exﬂmpla 2
A ray of light travelling through air (1 = 1.00) is
incen e of 40”0 1 he 1t e of &
oo gl pim 1 < 152) o angle 600 Calelte
(a) the angle of emergence of the ray at the second face
and

(1) the angle of deviation of the ray on passing through

Method

) Soksonto Exampie2

Fig. 143 Diagrams for Example 2

120

and require .

Fig. 14.3a illustrates the quantites required and Fig.

1430 i useful when calculating these quantiies. We
ot clobie 7, sy e ar o, e agl of

emergence, and , the angle of devia

(@) AUX we have f, = 400°,m, = 100, m; = 1.52 and

e . From h]u:mm\ i

o sinn =2 siny = 199 -
190 xsin 4007 = 0423

We require 7: which i found by noting

S P

Hence r,=A—r, = 600250
300

To find i on refraction at Y it i comvenient o use:
Equation 14,1 in the form

100,y = 1.52,r, = 350", Hence
h- 122

xsin 350" = 0872

angle of emergence
(6) Desiaton angle d s found froms:

d= (=) + e =r)

(0.0 250) + (607 - 35.0)

—ar
Answer
(a) 607, (b) 40.7

Exercise 14.1

(Assume refractive index of air = 1.00)

1 A ray of light travelling through o liquid of
absolute refractive index 1.4 is incident on the
plane surface of a perspex block at an angle of
55, Caleulate the angle of relraction in the
‘perspex f it has an absolute refractive index of 1.

Assuma tut
parseloyes

Fig.14.4 Diagram for Question 2



REFRACTION

In Fig. 14.4 a ray of light traveling through air is
incident at A at an angle of 500 on t0 a glass
surface which i costed with a layer of iquid. Use
the information given below 1o find the angles x
andy:
absolute refractive index o liquid = 1.35
absolute refractive index of glass = 152
A ray of light through air s incident at
an angle of 3047 on 10 the first face of a perspex
prism of angle 450", If te perspex has refractive
index 149, calculate the angle of emergence at
the second face.

Refractive index, speed
and wavelength
Refoctvs inde i qal 0w speed i

Referring to Fig. 14.1, when waves pass from
e o mesium 2t

a
e 144
where ¢, = speed of waves in medium 1 and c; =
speed of waves in medium

Note that the frequency fof the waves as they pass
from medium 1 1o medium 2 does not alter. Now:

e=fa 2

Thus the wavelength of the waves must change
from J s the wave passes from
‘medium 1 to medium 2.

Example 3
o s ncide

(b) In this case bone is medium 1, with i = 27.4° and
soft tisue is medium 2 with r - 100, Thus, from
Equation 14,

” 0460
o
~26
Answer
(a) 408kms™, (b) 265.
Example 4

The specd o gt n i 300 ¢ ! and the
specd of light in a corain fype of g is
196 10'ms-'. Assumingthat y:llw light of
wavelength $59nm i air i wsed, ca

(8) the refractive index when yellow light passs from
airinto the glass

(6 the gl of etrcon i s when eow g
incident at an angle of S0.0

(©) the wavelength of yellow light in the glass.
Method

(@ We have ¢ =300 10", c:
cequire Emmxlm e

96 10° and

®) We have i=

r, 53 and require .
Resrrangiog Equaton 144

Sinp = S0 _ sin SO

500

=300

Equation 12.1, or ¢ = £, holds for bath medium 1
d medium 2. Si b

angle of 10,0, in soft tissue, on 10 4 plane sof tissue -
bone boundary. I the angle of refraction in the bone is
274", calculate:

(8) the speed of ultrasound in bone given that it is
1.54kms™! in soft tissuc.

(b) the refractive index when ultrasound travels from
bone to soft tisue.

Method

() We have i = 4,01 = 154 10" and
e e Reamanging Equaion 144

0460

o

5410

€= fiy and ¢

i
Dividing the two equations gives:

145

Answer
@ 153 (0) 00

() 3850
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Exercise 14.2

1 Table 14.1 Velooly of ulrasound in various media

Medium

Soft tissue
Bone

bl 141 ghes e velaity o ulound for
Caleulate the angle of refraction

prisgfiomysgmeing Higigard

following boundarics:

(a) softtissue 10 bone

(b) air to soft tissue.

2 When ulzmound pascsfrom e to musce it

increase of 7.0% speed
propssaion. 1t e of meidens t e
interface. between water and muscle is 1507,
calculate the angle of reffaction. (Hint: represent
the speeds by ¢ and 1076).

3 A ray of monochromatic light s incdent, i air, at
an angle of 4507 on 103 plane sir-water interface,
The specd of ight in ai is 300 x 10'ms-! and
the speed of light in water is 225 x 10'ms-".
Caleute:

(a) the refractive index of light when passing from
water

(b) the angle of refraction in water

(c) the wavelength of the light in
wavelength 405 nm in water.

Critical angle

@ Rotacion win > 1y

) Crtcalangie

[ Te—

When light passes from a more (optically) dense
t0 2 less (optically) dense medium

which light will be totally internally reflected.
“This maximum angle is called the crifical angle
i as shown in Fig. 14.5, in which n, is greater
than n

In Fig. 145b, i = ic and r
142

90°. From Equation

e

B 46

122

Fg.145
Example 5

culate the ciial angle for lght pasing from flint
ey

1.33) and
00),

(a) water (n
(b) air (n

Method

(3) We use Equation 146 in which n
= 133 and we require
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REFRACTION

(b) We have ny = 1.65 and n; = 1.00. Equation 14.6 AR
ari
Answer )
o 27, 3. T
{0 Caane e s ot e s
re Optics e
(9 Cltne he s s s s e
ity
; " © n
01t 0t & o s 2000, i
e B o o bl 20, s e
o, s e s s 1
- o

3
g

) Loty et tecas s s
oo s (> e s

Fig. 146 Fibre optic action

Fig. 14.6(2) and (b) show the action of an optic
fibre in which we assume that the core has a
higher refractive index (m;) than the cladding
(n2) Light for which i is (just) greater than the
eritical angle i is totally internally reflected and

within the fibre by repeated
ns as shown in Fig 14.6(b). Thus
Tght s goded along the .

A fibre with a sharp change of refractive index
between the fibre (core) and the cladding, as
escribed here, is known as a step index fibre.

Example 6

Astep ndex fbre hasa core of refractive ndex 150 and
1.

Method

e

Fig. 148 Critcalanglo atthe coro-cladding Interfaco.

(3) Let the eritcal angle at the core-cladding inerface
in Fig. 148, We use Equation 146
which ;= 150,15 = 1.40 and we reqire L:

orf, = 690
(®) (1) In the case o

f ray 1, it continues parallel 0 the
ets the cladding,

axis of the fibre and never me
assuming the fbre s straight.
(2) Forray 2, this isrefracted at the air—core
erface as shown in Fig. 147. We use
Equation 14.1
1y = e = 1.50,

a0 200" = e s 1

perpendicular 1o the fibre  axi of
Toamochromtc) g iy in sk of refactne
index 100, arc incident on the end face of the fibre at
angles of (1) 0, 2) 20.0" and (3) 400, as shown in Fig
147,

Sin200° 0
sinry = SR 20 0228
Hence

n=131
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LEVEL PHYSICS

“The angle I at the inerface is given by

Henee
5 =769
Since s greater than the crit

thin the

al angle, this
internally reflccted

and

fibre - see also Fig.

of

€] his s refracted as shown in Fig. 14,7
We e Equation 141 with g e = 100,
1= = 80, angle of nidecefor 1y 3
T =400 and require angle
retracionr = . Thus
usin 40.0° = e sin ry
Rearranging gives
400 o
sinry = 0480~ 0420
Henee

The angle I at the interface s given by

Iytry =90
Henee
I =646

Since I isless than the eitical angle, this ray

will notbe totally internally

reflccted

e wil sape from the core of e e,

via the cladding, into the surrounding ai

€ The masimum ange oocus when ght s ncident

on the core—cladding

reater than) he rtal gl . - o i s

shown i Fi. 148 %0
0" We e Eqation 4.1 find

Hence
1.00sin 1 = 1.50sin 21.0°
or i=325
@
i o,

Fig. 149 Soluton to Example

124

then

s shovn in Fly. 14 e i e tht
light can travel cor rection
sl modey ik s cqual o the engho th e,
that i, 20m. The maximum distance that ight can

rvel e petcd itemal elcions at
uw.mmmmmmg.u.q\mm.
masimum disanee L __1
i dtance ~ L.~ T
masimum disance — Minimam disance
since
minimum diance = 2.00m and I, = 690
e

maximum distance =

200
S eng M
“This dierence in distance can lead to distortion in

sl rnsmited along step nde e, snce
signals arrive at different times at the output
e o
Answer
(@) 6
® m L @769 (646

& 200m (min: 2.14m ()
Exercise 14.3

T The el ande ot interace bt cromn
0 i = 45" Cleae e etacive
e of crown gas,assuniog n

Caleulate the :m;]c «r Incdenceofa oy o ght o
ofa angle 60.0° ar

~

one face
o et o e 50 e .., is
Just totallyinternally reflected at the second f

Caleulate the critical angle for a boundary
between aglass fibre, for which the refractive
60, and cladding, for which the

150

Information for Gueston 4

Fig. 14.10 shows light incident on one end of an

optical fibre and being refracted so that it is

incident on th with the cladding at

ot greser tha) the crcal angle, The core
1 s wih et Jodes 147 1 the

cllddmg s of refractive index 1

(3) the critcal angle

(b) angle.




LEVEL PHYSICS

“The angle I at the inerface is given by

Henee
5 =769
Since s greater than the crit

thin the

al angle, this
internally reflccted

and

fibre - see also Fig.

of

€] his s refracted as shown in Fig. 14,7
We e Equation 141 with g e = 100,
1= = 80, angle of nidecefor 1y 3
T =400 and require angle
retracionr = . Thus
usin 40.0° = e sin ry
Rearranging gives
400 o
sinry = 0480~ 0420
Henee

The angle I at the interface s given by

Iytry =90
Henee
I =646

Since I isless than the eitical angle, this ray

will notbe totally internally

reflccted

e wil sape from the core of e e,

via the cladding, into the surrounding ai

€ The masimum ange oocus when ght s ncident

on the core—cladding

reater than) he rtal gl . - o i s

shown i Fi. 148 %0
0" We e Eqation 4.1 find

Hence
1.00sin 1 = 1.50sin 21.0°
or i=325
@
i o,

Fig. 149 Soluton to Example

124

then

s shovn in Fly. 14 e i e tht
light can travel cor rection
sl modey ik s cqual o the engho th e,
that i, 20m. The maximum distance that ight can

rvel e petcd itemal elcions at
uw.mmmmmmg.u.q\mm.
masimum disanee L __1
i dtance ~ L.~ T
masimum disance — Minimam disance
since
minimum diance = 2.00m and I, = 690
e

maximum distance =

200
S eng M
“This dierence in distance can lead to distortion in

sl rnsmited along step nde e, snce
signals arrive at different times at the output
e o
Answer
(@) 6
® m L @769 (646

& 200m (min: 2.14m ()
Exercise 14.3

T The el ande ot interace bt cromn
0 i = 45" Cleae e etacive
e of crown gas,assuniog n

Caleulate the :m;]c «r Incdenceofa oy o ght o
ofa angle 60.0° ar

~

one face
o et o e 50 e .., is
Just totallyinternally reflected at the second f

Caleulate the critical angle for a boundary
between aglass fibre, for which the refractive
60, and cladding, for which the

150

Information for Gueston 4

Fig. 14.10 shows light incident on one end of an

optical fibre and being refracted so that it is

incident on th with the cladding at

ot greser tha) the crcal angle, The core
1 s wih et Jodes 147 1 the

cllddmg s of refractive index 1

(3) the critcal angle

(b) angle.




REFRACTION

w

Light travels through o glass optical fibre 30m
. The refrctive index of the glss is 150 and
that of its cladding is 1.30. Calculate:
(2 the speed oflght n the glass of the fbee
() the minimum and maximum distnces light
travels when trapped i the fibre
©) the minimum and maximum tines taken for
light to traerse the fre,
Assume specd oflgh n air = 3.0 % 10°ms !
Cakulate the tim taken o trael through 3 40.0m
length of fibre by red light and by blue light, for
‘which the fibre has refractive indices of 1.45 (red)
w47l T te oy of gh i o
be 3.00 x 10*ms~" and the refractive index of air
o be 1,00, Consider the axial mode only. (Hint:
see Equation 144.)

Not

te: the difference in travel times can lead to
ortion in signals transmitted along fibres.

Exercise 14.4:
Examination questions

Asume eicivs indexof s - 10
speed oflightn air = 300 x 10°ms ! unless stated.
1 (a) Explin what is meant by refraction.
(6) A block of glas of refractve index 152 is
surrounded by air. In an experimen. a beam
of light is projecicd through the glass and
strikes one of the faces (intemally) at an
angle of ncidence of 30" (see diagram).

B e e ange of refraciion
o the rfacted sy n e disgam.
) i he g ot
(©) The experiment is repeated with a fim of
water on the face of the block (see diagram),

e the ngle of refacon (o the
t passing into the wat
(i) et e pipr

gt pasing il the i rom the water

i Cunlmuc e ray n the g, shoving
rough the water and int
[WIEC mml

2 Thesped of ight i ai s lighy s than i o
light entering the Earth's
umuu\h:l: Trom space 1o undergo eton.

RotstonotEam

Ughtrom a s

Aosgrars

An observer at X is looking for the star to appear

dingram above, which is NOT
Rk e st a3 i
definite boundry

d diagram (greatly cxaggerated) shows
befbryrlyely i il
(0l 6 b anpe o ko o
ractive. index of the
nuwsvhzxc ' ooy
8 Cusinte ¢ the dviion o the g s
enters the atmosp
(6 Show th s an.lc o deaton cuues the
to appear above thy
el o, |m<m| e znm]
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CALCULATIONS FOR A-LEVEL PHYSICS.

3 “The speed of light in  vacuum is 3.0 ¢ 10 m
The spesd of lght in 3 smple of gl s
Wiichone ot A 10 bl s the et index
of the sample o glse
A067  Bow  C1s D23
[OCR Nuff 2001}
4 ‘The speed of sound in water is 150 % 10'ms "
and the specd of sound in i is 30ms
Caleula

(8) the refractive index of sound pasing from air

er
(b) the crical angle at an air-water interface,

I which dscton st sound pus 0 be (ol
internally reflected at an sir-water boundary?

m Sagrct shoms s cromsstonof e wll

e of an cmpy s ank viewed
10 made s gl of riacv indet
15, A ray of light traveling in ai is incident on
the base at an angle of 35" as shy

() Caleulate the angle 0.
® (0 Caelne the cridalsnge or the gt

(@ Henc,dro the the
ot of ‘the pas of the ray
through the glass wall and out into the
air. Mark in the values of all angles of
incidence, refraction and reflection.

[AQA 2001]
Diamonds are highly valued as gems because of
their brillance. Most of the light incident on a
webcut " damood il be ol intsmaly
reflected dy
Fabe dnmonds made of paste (1t ) reflet
‘2 much smaller proportion of the incident light

126

The diagrams below show the path of light
through a dismond .«.a Jbrough a0 idenically
shaped jewel made of

Oamona [
(0 Caleult the ange & o the 1y of ght
ough e s v
Bt 15

® e peed of lght in he dimond s
10 m, the  refractive

i tor donond

(€) Show that the ray of light in the diamond will
e totaly iniernally reflected at X.

[Edexce $-H 2000]

7 A beam of light in ai i incident on a short length
of glass fibrc s shown in Fig. 1411,

Fig. 1411

() Stte the change, if any, in cach of the
following quantitcs as the light enters the

speed of propagation ...

(1) The refractive index from air o glass s 1.50.
9 Caluaie the ange of refacion at the

i) Seon Fx; 141 the path of the beam
as it pusses through and emerges from the
fbre.

(©) Statc one advantage of using anoptical fibr for
Inormaton ey e sy
insulated wires (a cable). [OCR 2000]

8 (@) T dagam shows st
Ar

index opical ibre.
oot g & the i uf
& popet & incdent n st on he e

b s e s shown 1t dmgum
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REFRACTION

() Draw on the diagram the complete path
followed by the ray until it emerges at
the far end.

(i) Name the process which occurs as the ray
enters the end of the optical fibre.

erface.
) () G one reson iy i mterit
i used in an optical
) T par (3 (i, the cadding mteral has
3 eiaie s of 45, Expln vy i
e antageous (o use cladding
maeria ofrefracive ndes s han 145
(©) State one use of optical fbres.  [AQA 2001]
9 A step-index opticalfibre has a core made of glass
of sefractve index 152. The cladding is made of
material of refractive index 147

() Caleulate the critcal angle for the core-
cladding boundary.

(®) Fig. 1412 shows 4 scetion of the fibre
containing the wis of the fibre.

Fig. 1412 (ot o scale)

A beam g cer e e st an sl o
incidence of

(1) Caleulate the angles A and B in Fig. 14.12.

2) Sm: whzlhel Ihls h:-m m!l bc totally

imernaly ndding

it o wheer i il e

the cladding. Indicate your answer by
placing a tick i the appropriatc box

The beam i totally inernaly refected ]

“The beam ceapes ntothe cladding |

(9 The oprical fibe s 15k long, Assuming that

the fbe i siraight,caeutte the shortet and

s of light, entering

the fibre in different directions, to pass from
ane end of the ibe to the other.
[CCEA 2001, par}
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15

Thin lenses and the eye

Single lenses

s shown in Fig. 15.1, a lens acts to produce an
image 1 from an object O. The lens formula is
D,0-0
censr asn
where, as shown in Fig. 1. s the object
dianec, » the image ditance, and f the foca
Jength of the lens.

Example 1

An abject s placed (a) 250em, (b) 100cm from @

converging lens of focl Ieagth 15.0cm. Calculate the

image st o el o gl i
chcas,and ot the ype of imag pro

Method

We have a converging lens o the focal length f = +15.

o) T i 0 ral b, 10
5110 find v:

425, We armange

Since v s positive the image is real. The situation
s similar to that shown in Fig. 15.1a.

s defincd by

Commrgng ans
) Vet image "

Fig.15.1 Formationof images by a converging ens

Weshalluse the ral s ostve viual s egatve

3 tht o ol lagth

and that of a
diverging lens (sce Fig. 152) is g

Correct signs must be used in the lens formula.

128

Height of image
Fieight of object

n 152)

Itcan be shown ths

e TODAIEDE 2 (15.3)

Object distance

We have v = +37.5 and u

73
5

=150

The image is 1.50 imes as long as the objet,
(8) We have a real object 50 u = 410, Rearrunging
Equation 15.1 10 find v:

300em

Note that v is negative, 5o that the image i virtual.
Thesustonissimrlo it shovn i i 1510
slass. To find




THIN LENSES AND THE EYE

.00 times us long as the objet. The
ignificance of the negative sign is that the image
s virtual,

Answer

() 375m, 150 times, real, (b) 300cm, 3,00 times,
virtual

Example 2

‘When a real objc front of a divery
of foca enghh 20.0em, an image s formed unun
the

Example 3

A camera fas  fens of focal ength 500mm. 1€t can

rough which it
must be possible to move the lens.
Method
a1 Ovoct s iy (ot v, = 1)
Fin.
o
—_—
Pocaet rays rom
et iy

from the Jens. C:
tner mlgmﬂmunn produced. Draw a skelch 10 o

Memud

We have a diverging lens, 5o the focallengthf == ~20. A
real object always produces a virtual image when using.
a diverging lens, s0 1 12

(@) Rearrange Equation 15.1 o find u

® o fad the Werl magnifuion m ve e
puation 153, with v ~ 30

0.0
The imge s 040 ey s ong s he et The
segaie sgn shows the vl nar of the
image. A sketch of the arrangement s given i

diverging lens always pmaum a
rtoal, erect diminished image when viewing a
el abjet

R — /7

wergng ens
Fig. 152 Soluion to Example 2
Answer
(a) 30.0¢m, (b) (4040 times.

R I ——

) Otiectclosertaters

Lo
Fig. 153 Formation ofimages using a camera lens,
Thelens

e camera orms real images on he i, .
Fig. 15, The compound ens nth camera s
thought of 3 a singl thi, comerging les of foca
lengihy - 500,
i i 1535 v ettt e
lens must b at it

vy =f =500em
from the lens. When he (seal)object s at a distance

= +1.50m = +150cm

from the lens, the image distance v, as shown in Fig.
15.3b,is given by rearranging Equation 15.1:

()
17150

e regired movcacnt & of e e .5 shown
Fig 153, given by
a

s =S1T-500=017em
Answer

The lens must move by 0.17cm

129
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Exercise 15.1

1 An object placed 20em from a converging le
Tl in 4 el image formed S0cm from the
tens. Calculate the focal length of the lens.
‘When an objectis placed 10 cm from a conv
e, o e i s ks o0z 8
ject s oblained. Calculate (a) the image
iance, () th focal engh o he e
A cret imge, i a0 lon 3¢ he bt i
ined when using a simple magnifying glass of
foc:l Jengh 10om. Callte o) the obiect
e, (b) the image distance. Hint: viu =
wrm- 5o i is gt 2em i ron of o
ens, a virtual
o e i e o lengih o ien

~

-

The focal length of @ camera lens is 100mm.
Calculate how far from the flm the lens must be st
i an object which s (@) 100,
(b) S00cm from the lens. Hence calculate (c) the
movement of the lens between these two positions.

Lens combinations

‘When twolenses are used, the image produced by
the first lens acts as an object for the second lens.
“This hat, i we can

Example 4
A comering s of ol ks e s lced
contact with 3 diverging lens of focal ength 20c.

e the oo Tengihof th combmtion
Method

We e Equation 1541 which o the conwerging s
12

430, and for the am,m Tens
1

since the single diverging fens is more powerful (ic..

hasa shorter focal length) than the converging lens.

Answer

“The combination is a diverging lens of focal length

e

Power of a lens

The power F of alens, in diopires (D), s defined by
1

F=1

I

where f s the focal length of the lens, in metres.

as3)

have a virtual object for the second lens.
Lens combinations -lenses in contact
In this particular case the combined lens system can
be replaced by asingle lens of focallengthf given by

o1

IS4

where, s shown i Fi. 154, and ;s the
individual focal lengths of the separate lenses
The ﬂucknc“ of the lens

0s4)

Fig.15.4

Lansos in contact

130

as in Fig. 15.4, Equat
1545 Shows hat . mintadd powers of the
leases. Thus the combined lens system can be
replaced by a single lens of power F given by

F=E+F 156

where i and Fsare the individol powes of the
separate len

Example 5

@ Gl e poves of s comerging s oo

&) Caluae the comtingd pover of o conrging
lens of focal length 200mm in contact with #
diverging o of m.!m S0mm.

Method

e shall work in metres throughout this, and
subsequent, cakeulations of this type.

(8) We have £ = +0.25m. Equation 1535 gives

F = +40D

Note the positve sign, since we have a converging
lens.



Exercise 15.1

1 An object placed 20em from a converging le
Tl in 4 el image formed S0cm from the
tens. Calculate the focal length of the lens.
‘When an objectis placed 10 cm from a conv
e, o e i s ks o0z 8
ject s oblained. Calculate (a) the image
iance, () th focal engh o he e
A cret imge, i a0 lon 3¢ he bt i
ined when using a simple magnifying glass of
foc:l Jengh 10om. Callte o) the obiect
e, (b) the image distance. Hint: viu =
wrm- 5o i is gt 2em i ron of o
ens, a virtual
o e i e o lengih o ien

~

-

The focal length of @ camera lens is 100mm.
Calculate how far from the flm the lens must be st
i an object which s (@) 100,
(b) S00cm from the lens. Hence calculate (c) the
movement of the lens between these two positions.

Lens combinations

‘When twolenses are used, the image produced by
the first lens acts as an object for the second lens.
“This hat, i we can

Example 4
A comering s of ol ks e s lced
contact with 3 diverging lens of focal ength 20c.

e the oo Tengihof th combmtion
Method

We e Equation 1541 which o the conwerging s
12

430, and for the am,m Tens
1

since the single diverging fens is more powerful (ic..

hasa shorter focal length) than the converging lens.

Answer

“The combination is a diverging lens of focal length

e

Power of a lens

The power F of alens, in diopires (D), s defined by
1

F=1

I

where f s the focal length of the lens, in metres.

as3)

have a virtual object for the second lens.
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0s4)
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Equation 156 gives the combined power
F=F+F:=50-200=-150D.
Note that the combined I

Example 6

e ormeaandcnsof anomalamscommodied
has a power of +mn Find (a) the lens to retina

distance for this ey, () the pocr of the lens system
Tequired to ey focus on ot a o pont 35¢m
from e ey

Method

and focal length since the diverging lens has 3
higher power (has a shorter focal length) than the
cor s

Answer
() +40D, (b) ~150D.

Exercise 15.2

A converging achromatc doublet conssts of a
comverging (crown glass) lens of focal fength
20em and a diverging lens (made of flint
i, T e ol ot of he i

m, clclatc the focal length of the
dvering .

{8 Caltine the ol engh of e of poses

A ot power ~20D s placed in contact
ih  comerging o o ecal engh 20em.
ind the power of the combined lens system.

Correction of defective
ion

[——
Fig. 155 Formation of an image of a distant object
bythe eye

(3) The combined comea and eye lens system will
form images of distant objects at the focus of the
combined lens, as shown in Fig. 155, Thus the
Iens to retina distance is equal 1o the focal leagth
7 of the lens. Now.

[ = A= 0020m

“The lens to retina distance is 0.020m.

©) Thecy ens must now secommodat (changs s
focal length) in order to clearly focus on objects
close 1o the eye. This sl muxu in images
formed on the retina a1 a distance from the lens

of 0020m.

Suppoe tat the e focaleogth o e combised

- For i e th (rm) et ditace 4
i80.25m and o ey
(e Fig 15100 U(mg Equation 11

From Equation 15.5 we sec that 1 s the power
of the lens.

The eye and
The cye has the ability to form clear images on
the retina of objects at differing distances from
the eye. In order to do this the focal length of
the eye lens must be able to be changed — this is
done by the action of the ciliary muscles. This
effect is called accommodation. When the eye is
focused on a distant object it is said 10 be
‘unaccommodated”. In order t0 focus on objects
close 1o the eye the focal length of the eye must
that pows

must be

increased.

necds  power of S4D.
Answer

(1) 0.020m, (b) 54D.

Eye defects

A “normal” eye has a far point of infisity and a
near point of 25 cm.

In myopia (near sightedness), the far point is
closer than infinity and the near point may be
closer than that for the normal eye. This may be
due 1o the cycball being 100 long, or the cornea
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used to correct this,

to0 curved. A diverging lens
defect as shown in Fig. 15.6.

Far i of
Blunes mge incocied oo

) sl

@) Coocton ot myopi
g 3 g s

Fig. 156 Myopia and its correction

In hypermetropia (long sightedness), the far point
iy b i ear po more than

e A comergiog ot s uid to
Corect thi defctas shown n Fig 1

\ 7

@ Hypormarops

s

N poin ot
rooeced oy

Mormalnea poin.

®) Camecion of ypurmetopia
s o

Fig. 157 Hypermetropia and s correction
In presbyopia (old sight) the eye lens has become
hard with age and is thus unable to change its
shape and so accommodate over a sufficiently
wide range. The situation may arise in which the
near point s further away from the eye than
25cm and the far point s closer to the eye than
infinity. The elderly person may thus require o
sets of spectacles 10 aid close and long distance
work separately. The spectacles may take the
form of bifocal lenses.

Example 7

person with shortsight has a far point of 250cm and a.
ncar point of 15 cm.

(0 Calelate thepover o the s earesied
enable distant obiects (0 b

&) Calelte he e pio for e person wheo ing
ths spectacle et

(€) State the range of disinct vision when wearing the.
spectacles.

132

Method

() A diverging fens i used. The power of the lens is
e hat ke prodees vl mge o he ar
point of the eye (in this
object o e e o e e e
Fg 1560, Thus we b o 5"m

the correcting

Usng the lers fnrwmla Teaaton 153, '
oting F = 1f e

s

Hence power F=-040D, (Focal length
= ~2.50m) Note that this is a diverging lens.

() When an object is placed a1 the person’s
‘omste oca gin 1 pruducs il imge
rrected, near point. Thus we

e o e someeon e

‘corrected near point distance
original, ‘uncorrected', near point distance:
0.15m

.

power of correction lens = 040D
Using Equation 157 gives

Hence u = 0.160m.

(€) The range of distinet (corrected) vision is from
0.16m to infiniry.

Answer
(&) ~0.40D, (4)0.16m, (€) 0.16m to infinity.

Example 8

Aty personwith presbfoia s e pont of
0.400m and a far point of 4.00m. Calcul

(a) the range of power which this person's eye lens
hag

(1) the power of the spectacie lens required to enable
objects at the normal near point to be seen;

(© the range of distinct vision when using the
spoctacle lens n (b):

() the power of the spectacle lens required to cnable

objects a infnity to be seen.
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() A diverging fens i used. The power of the lens is
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point of the eye (in this
object o e e o e e e
Fg 1560, Thus we b o 5"m

the correcting

Usng the lers fnrwmla Teaaton 153, '
oting F = 1f e

s

Hence power F=-040D, (Focal length
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rrected, near point. Thus we
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‘corrected near point distance
original, ‘uncorrected', near point distance:
0.15m

.

power of correction lens = 040D
Using Equation 157 gives

Hence u = 0.160m.

(€) The range of distinet (corrected) vision is from
0.16m to infiniry.
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(&) ~0.40D, (4)0.16m, (€) 0.16m to infinity.
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Aty personwith presbfoia s e pont of
0.400m and a far point of 4.00m. Calcul

(a) the range of power which this person's eye lens
hag

(1) the power of the spectacie lens required to enable
objects at the normal near point to be seen;

(© the range of distinct vision when using the
spoctacle lens n (b):

() the power of the spectacle lens required to cnable

objects a infnity to be seen.
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Method
(6) T peron can o et o 040 up 1o
£00m from te . I cach e he imoge
Tocund o th resn ad e e d
i i (b lngh of the ) - P
distance b

Referring to Fig. 15.1, suppose that the eye
focuses on an uh‘cc £0.400m from it. We have

Object distance

loge i  enghof xtal)

e o h pover of e cornenand e ks b
. then using Equation

Similarly, when the eye focuses on an object
4.00m from it we have,

Object dis
e diance = uu.,n. of eyeball)

I the power of the cornea and eye lens is now F;
then Equation 15.7 gives

1,1
v a0

-F
By combining the two cquations above we obtain

Aok um) G+t

[z
=225

w

©

Thernge o omer ofhe g e e s
This & clled the ampliude
eommoduton, or s you g person the amplitude.
11D,

real object placed as far as possible from the lens
Lot vl a3 400m vy Ths
we hay

v point ving camcion
4 Som (irtolimage i far poin of he
ancorrected v

= 4150

The far point wingthe Cnrlrcmn e s 0571m
The di corrected)

om0 oS

(d) In this case o diverging lens must be used whose
power sk th & produces o vl image L
the the uncorrected eye - in this case
oo i £ an object o an e dmnm
from the lens. Working in a sim r 10

Example 7a we have u = —4
rquie the pover F of the cometing les.
Equation 15.7 gives

=-025

The power of the corecting lens required is
~025D.

Answers

@ 225D, ()
(@) 025D,

HSD, (©) 025m to 057m,

Exercise 15.3

(b) A converging lens is used such that when the
(real) object is placed at the normal near point
we gl 8 vital image at e nar i of e
uncorrected eye (see Fig. 15.7b). Thus we have
m (oormal ncar poi)
it magh, t ear point of
o)

uncorrected ey

and require the power of the correction lens
Using Equation 15,7

!
= 0w "

“25+40= 4150

Hence power required = +150D.

“The range of distinct (corrected) vision using the
orrection leus in (b) is oblaincd by noting that
the far point of the uncorrected eye is 400m. A

1 The combined lens of a normal, unaccommodated
e has a power of §

(4) Calculate the lens 1o retina distance.

(b) I the eye clearly focuses on an object 25¢m
away, find the change in power required.

A short sightcd person has a far point of 150cm

and a near point of 20cr

(@) Calculate the power of the spectacle lens

el o dey view an cbiet at the
ol far poi

(6) Find the range of distinct vision when wearing
the lens

3 An elderly person, with presbyopia, has a near
point without  spectacies of 0.50m and an
Tmpliude o scommmodaton of 15




Caleulate:
(a) the far point without spectacles;
(b) the power of the spectacle lens needed to enable
(i) distant objects o be scen,
(i) objectsat the normal near point (o be sen.

Exercise 15.4:
Examination questions

1 An laminsed bt s placsd 480 fom 3
. A lens is 10 be placed between the object

103 sreen in onder 0 procuce el e 0a

the screen.

(@) 1 the image s 10 be the same size 3 the

ject, what kind® of lens and what focal
Jength would be needed?

(6) 1 the image is 1o be twice the size of the
object, what kind® of lens and what focal
Tength would be needed?

2 An objectof height 60 mm is placed at  disance
of 80 cm from a converging lens of focal length
12.cm. Caleulte:

(@) the distance of the image from the lens (in
em) and

() the height ofthe image (in mim)

(© Ithei

3 (0 Explin s mea by the il tocss

and the focal ength of a diverging ln

©) Fig 158 shows. diveginglns withpincpl
and ¥ and an object OB placed
pendialar 0 he pricioe e
8
s G
o
Fig 158

On Fig. 158 draw suitable construction rays 1o
Joctc the imase of O, Ll this mage I Show

@ The abest sow coomerees. 10 move
ards the lens it 3 constant specd of
St

(1) Find the position of the image 205

[CCEA 2000]
0 Expin bt e by e
@) a divergi
e p—
the focal length of a diverging lens.

The lincar magnification of an image
formed bya converging lens s given by the
eight of the image divided by the height
ofth b, Sste st apesonfor
the lincar magnification. Identify any
h()l»np'xAnn;myuuqun\\l\n
(i) Describe an experiment to verify the
given in your answer
1 (b) (). Asume that an uminated
available. Your account should
include  abelled sketch of the apparatus,
outline of the procedure, headings for a
tablc f el wich wou be taken, and
results would be
provesedtoverty the cpresion

denify the object, the
image, the principal focus, and the posiion of
the eye to view the image.

(d) A converying lens and a diverging lens each
have a focal lengih of magnitude 150mm.
When a linear object of hei is

used
Vi e comvrging e o produce an
image o of heigh D,

Fin

s the height D o the i
et location o the Image for cach

‘e n the rolecio maybe s 0 be
‘which forms a real image of

(@ A divrging ens basfocallngth 0. An
‘object is placed 400mm from the s
6 Tind the potion of the image. and is
lincar magnifcation.

“Comersagr g

134

e e g dimersioms
280mm x 192mm. The distance between the
Side in the projector and it
S67mm. Caleulate the focal leng
Projector lens, and identiy ts type.

[CcEA 2001

image i
of the




(i) Explain whether the child ean focus on
n object at infinity.

(i) State from what defect of ison the child

sufers. [0CR 2000]

11 A shortsighted person s prescribed a lens of

125D 50 that an object at infnity may

be seen.
(@) Caleulate the image distance for this lens
alone when the object i at nfiniy.
(6 Exlain why. when g s presrbed s
‘spectacles, the image in (3) is formed at
he persn's far point

12 @)

(i) Caleulate the power of this new lens

(i) Explain whether the student’s sight when
not wearing glasses has improved or
[Edexcel $-H 2001]

12 (0 A bune o bght s from » kR

objec hich

provids the gresiest
‘converging effect on these rays?

&) Ascommotatin i the sty of the e to

roduce clear images of
range of distance from e
@

eye.
of the eye cnabe the

ors i 20m svay s e & vesrin i mods

e, His s nable i 10 o dsant (1) Soue e e o is proces.
s

e 20m ':',:‘h‘;;» - e o 0 b . Exen i

@ St he o mwn. ot the lenses i his

(i) Hum., caleulate the power of these

) Do s ray diagram of one of these
leme orming 3a mag of an bjct
s 40m
e mage.

near point,
) far point.

(@) A person has a near point distance of 120cm
and a far point distance of 320cm.
(i) Calculate the power of spectacle lens
0 change the person’s far point
10 the normal far point posit
Calculate the person's near point distance
when wearing the spectacles n (i)
(cCEA

2001)

(b) During his next sight test, the optician finds
that the student’s sight has changed.
“The student sees clearly when an additional
lens of power 400D is combined with his
existing lenses.

136

when they lie between his far point and 3 point
200mm from his eye. In order 10 allow him to see
dstant ajets ey be s prsrd 3 divergig
lens of focallengt

@ thl is u-e pelwn\ farpoint without

® CaV:uhl( the change in position of the
s near point when spectacles are used.
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Optical instruments

Angular magnification

The magnifying glass
(simple microscope)

is viewed, the appar the
object is determined by the length L. of the image.
formed on the retina. As shown in Fig. 16.1, L is
determined by the visual angle 0 which the objeet
subtends at the eye. Throughout this chapter we
assume 0 to be small, in which case L is dircctly
proportional to 0.

Fig. 161

The purpose of an optical instrument s to
increase the size of the visual angle. In doing so
the final image, when viewed through the
instrument, appears 10 be larger than when the
object is viewed using the unaided or ‘naked
eye. We define the angular magnification (or
‘magnifying power) M of an optical instrument
by

(16.1)

where f1is the angle subtended at the eye by the
image when using the instrument, and z is the.
angle subtended using the unaided eye by the
‘object when at the appropriate distance.

Using the unaided eye, the maximum apparent
o of the obec ocours whe & i plac t the
least distance of distinct vision D (typi
250 for adals) fom e ey, 25 shown i
Fig. 16.2.

= negntatobect0

— !
Fig 162 Visualangle ol an bfctat h et
distance ofdistinct vislon

‘The angle subtended =, in radians (sec Chapter
2),is given by

162)

where 1 is the height of the object O,

< hognatimage
7 peigha otjoct

FIg. 183 Visual angle fusing a simple microscope

Fig. 16.3 shows the formation of an image I when
the object O is placed distance u from the.
magnifying glass. Since u is less than D, fi is
sreater than . Ths
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163

‘Combining Equations 16.1, 16.2 and 16.3 gives
_b_hiu

M=
d WD

m="2 (16.4)
“This s  general expresion and i truc for whatever
value of » (and w) we have. Note that in normal
adustment the image distance v equals D. 1t is
convenient to use Equation 16.4, but you should

‘ol a1 o he g M doss ot e o0
the hei ct, since ki cancels in the
G of Equion 164 To check ou anocr
for M using Equation 164, we hase D = 250 and

250 < 55 = 6.00

0

(a) 800 % 10" rad, (b) 480 % 10" rad,
(©) 600 times.

Example 2
A wihes o sy  potogrph i i di by

Example 1

An object of height 200mm is 1o be viewed using @
simple magnifying glas of focal length S0.0mm. If the

c (
the magnifying glass. Hence e (e angular
ification achicved. Check your answer 1o part (¢)

using the appropriate formula.

Method
Using millimetres we have A = 2.00 and D = 250
(@) From Equation 162

(9 Refering 10 F 162 o b g it
siec the s virtal,

15nv 1u find f we nquuv (he 0h]acl

ance 4. We can reamrange

i e kg v ya

1
PRIt it ]
3

From Equation 163
ik
<4805 107 rd
© From B 61
[N
M= ﬁ X0
Note that the image s virual 50 we should,

sty speaking, wite A = 6,00, It is common
practice, however, to write only the numerical

0

in such away
e s \magz mmlrnl ten times and at a
distance of 250mm from the lens. What focal length
Jensshold he s, and how Gt fom th phograph
should it be h

Method

We have M= 100, Refer to Fig 163. Using

nnﬂlmcnu we have v = 250 and we have 10 assume
250, We require u and .

Rmnangmg Equation 164 gives us (without signs)

9 B0 _ 35 0mm

“ 10

e potogagh i held 5sam from the . From
Eaion

1=

Answer

=278mm

20
9

A converging lens of focallength 27.8mm s needed at

250mmfromthe photograph.
Exercise 16.1

1 A man whose least distance of distinet vision is
250mm views a stamp using a converging lens of
focal length 30mm. If the final image is located at
the least distance of disinet vision, calculate
(@) the distance of the stamp from the lens,
() the angular magnification he achicves.
Assume that the eye i close to the leos

Repeat Queslon 1 bulssume ta the e

Repeat Question | n.. a man whose least distance
of distinet vision is
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The astronomical
telescope

Rays rom top ot ofect

sy

Fig. 16.4. Visual anglo i the astronomical elescope

featid

Equation 16.7 is  general expression and can be
used at whateve irtual image

er distance the final
i formed from the eye. In nomal adjustment, in
which the final image is formed at infinity, we
note two special characteristics:

(1) u =fesothat M = fff

(2) The objective and eyepiece lenses are
separated by a distance (7, + f;)

Example 3

An astronomical telescope has an objective lens of focal
length 100cm and an eyepiece lens of focal length
500cm. Caleulate the angular magnification and the
separation of the lenses when the Ielescope is in
nomal adjustment,

Method

Referring to Fig. 164 we hae f,= +100 and
Jo= 4500,

In normal adjustment u =/, = SO0, Thus from
167

Equation

Flg 164 shows how an amonomm} telescope, P
used to observe a distant object such as a star, s
increases the vioual angl. The objet would ~0
sublend an angle 2 when vieved with the gl te
unaided eye. Use of the telescope leads to the T PATion S of thefemes s given by
formation of 4 final image which subtends an S0 = () = 10045
angle 1 at the eye (assuming that the cye s close 1050
fothe xpiec ens). Fom Fi. 164, in which  answer
the e g I f eight 5 and
e M= 200,k s 10scm.
ank o Erampled
£ An astronomical telescope consists of two
Eomvering e W 1.5 vl adusment b
and lensesarc 650mm apart and the ngulr magnification
i 120, Caulate th foca lengih o th obcctive lens
o Ty e .
u Method
where x and f, in radians, are small angles, Ve e M = 12 and lens scparation $ = (S0
Combining Equations 16.1, 165 and 16,6 gives oW i normal adjusiment (se Example 3
the angular magnification (o magnifying power) o ;
s 2% [
e=bs0 i
r i @
A lwns\mull.mel\u\cqualmmlﬁ(:km'\lu’)m

1167)

Wehave
‘we substitate for £, from (i) 0 (i):

1 +f, = 650
1= somm
fo= 12/, = 609mm
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Answer
The objective has focal leagth 600mm, the eyepicce
SOmm.

1 An asonomical telescope which is in normal
adjustmen consists of two thin converging fenses
of focal length 60.0cm and 3.00¢m. It is focused
on a distant object which subiends an angle of
200 10 ’rld e viwe . Cuolae
() th <d. (b) the

ity nf e a0 e e sbended

by the finl

2 An astronomical lzlmrx Has an obiect of focal
leagth 90cm and aneycpiece of focal lengih
Scm. When, in normal ad

view 4 full moor

angle of 0.10 radian at the eye lens. Calculate (2)

the angular _magnitication, (b) the _angle

subtended by the moon when viewed dirccly.

Gientha e ditacsbeween e moonand e

10" kan, calelate (¢)the diameter of

the

Exercise 16.3:
Examination questions

1 Astudent with

a

() A photograph is taken of a distant object

of 25cm using the naked eye, calculate the
overall magnification achieved.

In order to view the slide in more detail a

distance of distinct vision (25 cm
o the emege. I thecverall g
now ac 10, calculate the required
{ocallength of the magnifing o
An astronomical telescope has an objective of
focal length 900mm and an eyepiece of focal
leogth 18 mm. Assuming the instrument s in
‘normal adjustment, calculate:

(8) the scparation of the lenses and

(5 the maglfog powes i

The anplar mgsifiion of 10 sl
telescope in normal adjustment is 4.00.
i banvcen e e 625 el
the focal length of:

(a) the eyepicce lens
(b) the objective fens,

An astronomical telescope in normal adjustment
Hhas an objective lens of focal lengih 20cm and
the scparation of the lenses is 25cm. The
telescope view  disan bjct wmcn sibnds an
angle of 5. it the

e o ane o e byt

120cm uses a 6.00cm focal length converging lens.

o capning guw in oder o cxmine e
detal ide. Assuming that the

e s el cove 1yt :yc and that the image is

viewed at the student’s least distance of distinct

vision, calulate;

(@) the distance x of the side from the lens.

(b) the angular magnifcation produced.

140

image at
An astronomical telescope in normal adjustment
b 20 e o Local enth 090 s e
lemes are sepursed by a distance of 100
uscd 10 view the full moon he image
hends on angle of 51 10~
fens. If the distance between the Earth and
S e e s of

d ot he e
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where V is the PD across the heater and I; the
current through it. m, is the mass of substance
evaporated in time 1, the specific latent heat and
H the heat loss in time £ 10 the surroundings.
Usinga diflzeat eatrwlags Vo we gt acinece
1> and a mass m is evaporated in time 1.

Vil =ml+H

‘We have assumed H 10 be the same for both rates
of heating. This should be true enough since the
liquid i at its boi int each time and H is
already small due to the vapour jacket reducing
heat loss

Example 6

Inan experinen o determine the sy st
saporisati ol wsing o selfjacketing

oo he alowing et wre chen

260A, mass my =580 x 107 kg,

132107 kg

Calculate (a)the specific ltent heat of vaporisation of

{6) Yo cn i Equton 177 ¢ 178, Refering to
Experiment 1 and Equation 17.7 we have

Py=Vil, =74 %26 = 102W

g oSS0 g
We require pover P st which i - 15§ per
minute  or asmmw Rearranging

Equation 179 gives

P=h (750
=1924(25-193) % 107 % 914 % 10°
aaw

Alternatively, we Valyt =myl + H.

For
S008 (5 i H 71— $ %15 2 10°,

14 10 and we calculate Vsl

Answer

() 914KIkg ™, (b) 157W, () 244 W.

Exercise 17.2

Asming ta bt loses neglected.

Toverof et ruired o bl

Pt 10,0 per minute. Asume |
for water = 226 MJ kg

2 An experiment was performed to determine the
specific latent heat of vaporisation of 2 liquid at

it boilng point. The following table summarises

the result

the alcohol, (b) the average rate of heat loss to the Voltage (V) Cument (A)  Mass (g)

surroundings, (¢) the pawer of m heater uqnm o evaporatedin 4005
100 20 156

Method 150 250 306

@) We arrange Equation 179 with = 300 Callae @) the e nent st of

74526 x 300
e
ol x 10k

(b) To find H we rearrange Equation 17.7 and use the
above value for . So

it = mil

(%26 300~ (S8 x 107 914 x 10)

—any
The average rate of heat loss is
Hit = 471300 = 157W

vaporisation of the liquid, (b) the energy loss to
the suroundings in 4005, (c) the rate of
evaporation of the liquid when a 300W rate of
heating.
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Heat Transfer

Tho thes common prossse by i ibermal
uction, convection

we shall deal with
conduction. Radiation is dealt with in Chapter 31.

Thermal conductivity

“The thermal conductivity k of a material describes
how casy itis for thermal encrey to pass through it
from a hotter place (temperature f,) to a cooler
place (emperatue ) separatd by 1 diance |
1t is defined by the equation for the rate of
ranste o hemml enrgy A/ i which

g =kt~ B3

a7.10)

where, as shown in Fig. 17,4, s the area of cross
section perpendicular 10 the direction of thermal
energy transfer. AQ/A! has units joule per

second, i.e. watt (W).
e
.
ok Bomth

Fig 17.4 Transterof therma energy by conduction

“Thermal conductiviy & is analogous 1o electrical
conductivity (sec  Chapter  20), KA/l
conductance, [kA s resistance, AQ/A is
analogous to electrical current and 0, ~0; is
difference.

analogous to electrical potential
(0,001 may be called the temperature
gradient and is constant if A, k and AQ/AL are

stant. (negligible heat loss from the sides).
Tho onit o tpperstrs gaint i K Vand
the unit for kis W K"
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Thermal conductors in
series

Contuctor1

Fig 17.5  Conductors in series

In Fig. 17.5, with no loss from the sides,

AQIAI = Ky/A(; ~ 0y); and here, we emphasi
AQ/At s the same for conductor 2. Therefore
AQIAI = koAB) - O:)l.

Most problems can be solved by using these two
cquations.

Fro ot eqelions r AU {weliaioate
we can get AQ/AY = (6 — G)R. R is the
el sesisance iven = o 1 Ry To the

ctors in series where R, = h/kA and
Ry= Dk

Thermal conduction in buildings

Awall of a building may consist of (say) glass for
part of its area and brick elsewhere. In this case
the total rate of thermal encrgy transfer through
the wallis the sum of that through the glass and
that through the brick.

If the wall, or floor, or ceiling comprises o
layers then we have two conductors in series and
s shown in

Example 7

ous b 3 oo made enirelycf
mmu nh\cn s 200mm thick. The lows
the

contact wih th ving a1, bas 3 Wpersure of
150°C. The foor is square and of sides
10m x 10m.

(4) Caleulate the rate at which thermal encrgy is
conducted through the concrete. Asume. the
thormal conduciivy  of  conerete s
0750Wm K.
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house owner decides to cover the concrete.
i carpet of thickness 15.0mm. Calculate:

interface

(b) the temperature at the carpet/concret

6 the e ot which dbermal ccngy s conduted
through the two layers.

Assume that the capet has thermal conductiviy
~0060Wm K. Asume also that the

surface of the conerete remains at 10.0°C.

Method

(3) Almost without exception  thermal conducivity
question requires the use of

—0)

20 _ k-0
T

Using this ormla, 201 i the coury per
for part (a) of the

Q) Wocm sty = 1259°C withchle of e s
expressions, [ﬂurpe or conerete, 1o find
For the cas

AQ/AJ = 400(150 - 1258)
= 968 W or 0.968kW
‘Note that even though the thickness of the carpetis

concrete, since the temperature
nerete reduces from S0K 1o only 26K.

Answers
(@) L8SKW, (6) 126°C, (0) 0968KW

U-value of a sheet

oo, & BTSN ot onere
r, A s 10%10= 100, [ s 200mm
(=0200m). 0, ~ 0; = 150~ 100 = 50K

20 _osxitaxso,
Sy
T e givento
3 significant figures the answer for AQIA! i
188kW

= 1875 W = 1L875KW.

(b) The rate of conduction of thermal energy AQ/A!

through the carpet and then through the conerete.
oo i e since the two conductors are in
series. Ne 50°C s the temperature of the

upper surface of the carpet and 6 = 100°C that
of the lower surface of the conerete. Let 0 be the

femperre of ihe el meroce
For the carpet, for which k; = 0060Wm 'K *:
AQIA = kA - )
=0.060 x 100 x (150 - 0,)0.0150
- 4000150 - 1)
For the concrete, for which k; = 0.750Wm ™' K-
AQIA = kaA(fy — )y

750 100 x (0 - 10.0)0.200
= 3750, - 100)
Equating the two expressions for AQ/AL gives
400(15.0 - 0y) = 375(6;  100)
Rearranging gives
0y = 9750775 = 1238°C

Heatinsulating materials can be bought as sheets
of various thicknesses and the value of K/l for a
sheetis called its U-value.

So AWA:=M

UA X temperature difference
azy

‘The ST unit for U is wattm 2K ',

Exercises 17.3

1 Calculate the rate of energy transier through a
e of cork of 20mm thickness and 24cm’ arca
the temperature difference between. its
surfaces is 60K.
(& for cork = 0.050Wm ' K™

2 A st of mmla(mg el & u( ¢ dicloew
L5
e SR e i s cncrq

(Hint: assume a o om0 )
3 A 10cm long brass bar is joined endon 10
opper bar ofcqual Jengih and dmetr, 058 (0

brass bar is maintained at 100°C and the far end
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of the compound bar is kept at 20°C. Calculate
the rate of energy transfer slong the bar and also
the temperature of the junction.

K and for

Assume k for copper < 400W
b= 100Wm TR
8 The base of the loft in a house consists of wooden

board which s 15 mm thick and of area 200
The thermal conductivity of the bourd is
5SWm- K

of the house is maintained at 20°C, whilst that of

the loftis 0°C. Caleulate:

(8) the rate of thermal cnergy transfer into the
oft through the board.

1 the owner now decides he loft s

T coneig 1 board wih e o mm[zmls

material of thickness 10cm and - thermal

conductivity 30mWm K-, calculate:

(®) the temperawre of the  board/insulating
‘material intetface and

(©) the new rate of thermal encrgy transir into

Assume that the board and insulating material are
in good contact. Comment on your answers.

(a) State two factors which affect the U value of a
material.

(b) A suit made for use in cool cimates has a U

Value of 0S0Wm K, It has a total

f 20m' and skin

Calculate the  air

g that s other than conduction
can be i
(Hint: use: [qnﬂlmn 1711

Exercnse 17 4:

1 (®) Define the specific heat capacity of a materi

) 1t it 10 e he pecic beat

acity of - copp clectrical
mihod. Draw. 5" belled disgrar of the
cireuit you would use.

(6) A block of material, of mass 175 kg, is heated
by a 120W heater for 500 minutes. The
ock s complly laped, The il
temperature of the block is 180°C.

ol st capchy of the erl of b
block is 4351 kg
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(i) Caleulate the final temperature of the
block.

i) What s the purposc of having the block
completely lagged
(@) The lagging around the block in (c) s removed
and the block i placed in thermal contact with
an identical block which is at a temperature of
120°C. Het (el ene) s lnmlcnnd
from the block at the higher ey
heone st o ower temperae.
0 Name the picival method of bes
transfer in this
(i Descrne the mechanis o which energy
s transferred in this meth
|CCEA 2001]
2 The following data refer to a dishwasher.
gower ofheug clment 25K
time to heat vater
mass of water used uu
inital temperature of water 20°C
final temperature of water  60°C
(o Takin the spesifc eat cpocy of vt
be £200J ke 'K, calculate
) theenergy provided by the heating elemen.
rgy reqired to heal the
(b) Give two reasons why your answers in part (a)
differ from each other. 1AQA 2001
3 A teacher is demonstrating the power used by
different devices. She drill a hole in the wall for
30 with an clectric drill connected 1o the 230V
mains supply. The average current is 090 A.
she puts the drill down, the
dril bit melts  hole in a plastic tray.

of the steel

Assume that all the clectrical energy supplied 10
the drill is transferred to the bit where i

produces heating. Calculate the temperature of
the bit a the end of the dnllmg

Mass of the drill b

Specific heat u,mny.-m:;x St0skg et

Room temperatur
Discuss whether this s likely 1o be the actual
temperature of the tip of the drill b

[Edescel $-H 2000)

4 (3) Define the specific heat capacity of a

substance,

(b) The energy of foodstufs may be determined
by measuring the thermal energy produced

when the substance bums. In such a
determi of food, of mass
158, e of oxygen in

a scaled, thermally-insulated stinless. stecl
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©

5 @)

®

Lot o mas Stk e il i
tempera

el W0°C. e o s e
clectrcally, and the equiibrium temperature
s found 10 rse 10 43.5°C. No heat enery is
ost o the surroundings.

(i) Calculate the heat energy supplied (0 the
stainless steel vessel by burning the food.
Speciic heat capacity of stanless steel
= kg C

(i) On packets of food, the energy conten of
ke foodstf is often expressed in K per
100¢ portion.
Neglesting the cnrgy upped by the
system, thecnergy
 15g sample of food is
caual 1 the hea cnergy supplied 1o the
st e eu e the sl
ur answer to (i)
e e eneey e o :m
foodstuff, Give your answer in kI pe
100 portion.
In () you were tod 10 oegect e
conuributed by the electrical gnition
system,

i)

In fact, the food is burnt by supplying a
cument of O0A o a lament of

for 120 mi
ot e e v of the energy
content of the foodstuff.

When the spesic best capcty of a g 6

A picce of ium of mass 020kg and
specic hew oty 120kg 1K i esed
a seady temperatur ¢ and s hea quikly
Sy Pt

hul

calorimeter of wa
eq\mmkul (Ileﬂkg e lem)»valure of he

m 16°C to 21°C. Caleulate the
m..pmmm « given that the specific heat
capacity of water is 42k kg 'K

A crgy ccsrsion et ettt g »

shower rather than a

A student takes some measurements (0 tes ths.

Shawer

The sidents shoverwies n eeticl heer

heat cold wat

The heter s aed t 1RV,

Time for shower 10 deliver 1 i

water = 12,

Density of water = 1000kgm

(3) (i) Show that the mass of water delivered by

the shower in one second is about 0.08 ks.

(@) The showerlss for 8 mimics. Calulte

the total encrgy used by the heater 1o

heat the water.

(001 of

> (lkglitre ),

Bath
The student’s bath uses a misture of hot water
{rom a 1ank hesed wih  imménion heacr and
cold water from the main supply.
“The bath s run using 30 litres from the cold tap
and 42 litres from the hot tap:

=15°C

s les when the

ke ot vt o when

s allowed 1o expand against_amospheric

pressure. Making eference to the First Lw

of Thermodmmics gt o xpaion

[CCEA 2000]

Define

(i) specific latent heat of vaporization;

(@) specific heat capaciy.

“The electric heating. clcmnl ol ln instant hot

e shower 1as 4 pow . The
o e of s rouh the e

36 105 mmin

(i) Determine the mass flow rate in kgs '
given that the demsity of water is
10% 10 kgm ™

@) Gl the e in tempesuce of

through the heater.
oo, -m e &Dull’n. e capeiy of
water is 42 10 Jkg tthe
et e mn’ulmdmp is nql@blz
[0CR 2001]

Temperyue of wale from ot ap = 55°C
Syl hest copucy
=420 agt

©) ) Show s this s of bot ad ok

Shou

assumption you are maki

@) Caiate the cocrgy Supplicd by the
 heater for this bath.

i project, the student_assumes that the
immersion hestr hating her bath waer 5 100%
efficient. Explain_ whether or not this is @
reasonable assumption.

s the accuracy of the statement that ‘using a
o s s

" Edeners 1 2000
A ket rated at 200KW takes 2005 (0 raise the
femperuur of 80 of water by SDO°C. I e
specific heat capacity of water is 420k)
lclnc the mean rate 1 which encrey [
the surmoundings.
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9 A lck of jc a & emperature of 0°C and of

the minimum time it will take (0 melt, given that
the ;mr-: latent heat of fusion of water is
32x

10 1n unexperiment o determine the speic et
heat of vaporisation of a liquid, an. elect
et bl he id " in el imed
contaner. The resanc of the beer s 3000
0 the potntal dierenc acos he beatr
800V. £ S0, the mass of iqud
o 010k ol

(3) the energy transferred to the liquid

(1) the specific latent heat of vaporisation of the
liquid.

11 In a heating experiment, cnergy is supplied at a
constant rate to 3 liquid in a beaker of negligible
heat capacit temperature of the liquid rises
at 40K per minute just before it begins 10 boil
After 40 minutes al the liquid has boled away.
For ths liquid, what is the ratio

specific heat capacity
Specific atent hea of vaporision

1 p gt
B4k okt o bk

[OCR 2000]
12 An electric ketle with a rating of 30kW contains

ing the water (o steam and th:

convert he ket
ol ot 130k of water. how Jong il H
take before half of the water is boiled off?

“The sposifclatent heat of vaporisation of wateris
237 10Tkg

13 A hin bk il wih AW ot vt 210°C
and placed on a table in a varm room. A second
Identeatbeake, fled wth 400 of a i waer
miture, s placed on the same table at the
time. The contents of both beakers re stirred
continuousty.
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The graph bekow shows bow he empertie of
the water in the first beaker increases with

Temperature o
e
2| i
Tivaiminutos

(®) () Use the graph 1o find the initial rate of
rise of water temperature. Give your
erinKs".

@ The spectc bt cxpciy of waer o
Aumx, . Use your value for the

ot o temperature 1o estimate

the initial rate at which this beaker of

ater s taking in heat from  th
undings.

raph below she apencse of e
et e e o . e
placed on the table.

® @ How

before the  ice-water

z
§
B

[Edexcel 2000)
14 Ll commonly e ool diks.  an s b
emperature of 0°C and of mass 0.015kg i
nto a beaker containing 0.15kg of water
with an initial temperature of 18°C, cakulate the
ol teperaure of he el vaer Awme
that no heat is exchangs

‘K.

Specificheat capaciy of wa
Jriotoatrims e i

15 (a) Define the terms specific aient heat of meling
speciic heat capaciy. State bric

cach of these quantiies can be measured for

a substance such as water.
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(b) A wellinsulated picnic hamper has placed in
it twelve 330mi cans of lemonade, initally at
20°C, together with 20kg of ice at 0°C. Use
he dan below o ctsic the r...l
temperature of the lemonade. Siat
assumptions.

[Specific heat of water (or lemonade)
200 kg K.

‘Specific latent heat of ice = 3.3 x 10°Jkg';
density of water = 1000kgm; I = 10°“m']

() In fact the picnic hamper gains heat from its
indings by thermal conduction through

i imsing poyene. The enry pin
propor the tempersture diffrence
T veweon i oo and- mide of the
bee. e e of coetg o for 0

al 02SAT Js ', where

AT mesared
() Show that, when all the ice has melted.
the temperature difference AT decays

when it is kept in the boot of a car at 4
constant temperature of 30°C.
[OCR spec 2001]

16 Onaveycodday. it emperatur s -50°C.

A pond has a lay s SOmm and

e tempernture of the eiog pond is
uniform at 0°C. Calculate:

(a) the magnitude of the temperature gradient

cross the ice layer

(b) the rate of transfer of thermal energy per m*

through the ice |

Thermal conductivi W K

Assume that a steady state has been achicved.

A botvato ank i lgged il mterisl which
allows thermal energy 1o escape at a rate of
T00W. The owner & disatiicd wi this and

19 A greenhouse, which may be assumed to be made
entiely of glass, needs 2 300kW heater to
‘maintain it at a steady temperature. The glass is

¥ K
difference across the glas.

Assume that all other forms of heat loss, other
than conduction through the  glass, are
ble.

20 The dingram shows the only two external walls of

o duekig o+ by bl o » ot
country. The aver wide temperatureis
33°C. The building is ;-r conditioned and the
inside temperature is 22

In which direction does energy flow through the
walls? Explain your answer.

(@) (i) State, in terms of cnergy flow, what
Condiioner has 1o o 0 keep the e
anc

() The wals b an averge Unaue

mK. G Calte the avemge

larger or smaller would the power
be without this layer?

replaces the lagging with of half
he thrmal condutvy of the original and e

e thickness. Caleulate the rate of thermal
energy transer through the new lagsing.

A domestc refrigerator can be thought of as @

room
[Sopestie 121 eal e apenioe a2
the refrigerator is maintained at 4

the rate at which heat flows ino the u!nxenmt
from the roor

® They
have o total_mass of 11 tonnes, (1 tomne
= 1000kg) The speciic nu( iy of e

ke

reduce its temperature from 33°C to an
average temperature of 25°C in the first hour
of switching on. [Edexcel 2000]

21 (@) Desere e principl process of thermal

conduction i
 ommetalic solid:
a meual
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(®) Fig. 17 oss-sectional view of the.
g of s G et T et 8
operating under steady state conditions.

nsuiing ——
i

ouer
oo caso

Fig. 176

ks of nslting e
of outer steel

thermal conduc

thermal mnduﬂml’ " mwlalmg sl

=000Wm K

) 1f A6, =
outer secl
dopcns e |mnlzl|rumzlenal show

=310

temperature drop across the

(5 Theefctive acmof cch of the surfaces
X and Y of the frezer casing is 25m'.
Caleulate the rate P a1 which thermal
energy will be conducted into the freczer
when the temperatures of X and ¥ are
~15°Cand 7°C 3

[OCR 2001)
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The ideal gas laws and kinetic

theory

The gas laws

volume of air, at
from the cylinder

aumospheric pressure, which escapes

The laws obeyed by a perfect or ideal gas are s
follows (for & fixed mass of gas):

PV = Constant, at constant 7" (Boyle’s law)
4 = Constant, at constant p(Charles’aw)
£ = Constant, at constant V' (Pressurc law)

where p is the pressure, ¥ the volume and T the
absolute temperature (K) of the gas.

The ideal gas equation

‘The three laws above are incorporated in th
gas equation:

14
T

Constant asn

An alternative way of writing this is

g2

wherepy, Vi, Ty refer to the inital state and ps, V2,
T, to the final state. Note that pressure and
volume may be expressed in any suitable units
(see Chapter 3) that we choose, but femperature
st be in Kelvin.

Example 1

A gascylinder has a volume of 0.040m' and contains air

e of S0P Asunin it teapersre
e (3 the equialen; wiume

bt st (10 0D, oy e

Method

@ e s s then T, =T,
1 182 reduces o the quition (M!lo)ks

oo and e

nh=p: a83)
w= have

20x nr Vi = 0040, p:
Shdremut

0x10°

Rearranging Equation 183 gives
n 10° % 004
16

~0som’

(b) Air_ escapes from the oylinder untl it contains
004m of air at atmospheric pressure. It s then
“empty’, so that a vohume AV will escape where

AV =080 004 = 0.76m"
Note that AV
pressure, which
the cmpty’
20MPa.

the e of i, t smcapcric
h ol hav (o be pumped nlo
linder to raise s pressure

Answer
(@ 080, (b) 0.76m’.

Example 2

A sk containingai is corked when the atmospheric
pressue is 750mmilg and the temperatare i 17 C.
"The temperature o the flask i now rused gradualy

cork blows out when he presre in the

exceeds amospheric presure by 150mmHg. Caculte
hetemperatureofthe flask when this happers.

Method

Note that we have to ssume that corking the flack did
ot chane the origina pressur o the ai inside i,

153
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tha e mospheric e i nchanged s
that the volume of the docs not change
reciably during ecnge ol\:mp(rxl\n:

I the volume is constant then V; = V; and Equation
182 reduces to th equation fo the Pressure i and
becomes.

ass)
We have

1 = 750mmig

1= 273417 = 200K

2 = Atmospheric pressure + Excess pressure
= 750+ 150 = 900 mmH

To find T; we rearrange Equation 18.4. This gives

Note again that the units can be mmHg for pressure
provided that bosh p and ps are n o i
Answer

The cork blows out a 75°C.

Example 3

A s ojindr of wlume 40 live (40 0”m')

comtains oxygen at & temperature of 15 C

o o) the cqunins
ndard temperature. and

T (517 oy the s of gt eyt

The density of oygenis .4 kem ™ at

Method

Standard temperature and pressure (STP) are 0°C und
espectively.

10 10°Nm ¥
(2) We use Equation 182 in which we have
P=25 0V = 40107
=273 415 288
P2 =10 % 10%, Vs = unknown,
Tem0mm
Rearranging Equation 182 gves
v
T
251 xdx 107 x2m
W 10

=948 107 m

(b) The density of oxygen is 1.4kgm . To find the
Mass = Volume » Density
OB X107 x 14= 0133k
Note that since the density s quoted at STP we.
‘must use the volume of gas at STP.

Answer

(@) 95 107 m’, (b) 0.13ke,

Exercise 18.1

1 Change the following Celsius temperatures into
degrees absolute:
@ 7°C ®) T0°C, (@) -
(d) -199°C

2 A fd mas o ga s beld 3 27°C. To what
temperature must it be heated so th
doubles i ts pressure remains constant?

3 Acmlymhaslmlumcdh(xw'm and

which
it atmospheric

1.0 10° N
the air inside would occupy
ressure, assuming that its temperature remains
unchanged.

-

nside a sealed containe s a fd mass of gas at 2
presue of 1510 P wen the emperre
bt temperiure wil the prosurs

mid e 35 < 10 o7

5 A fixed mass of gas has a volume of 200cm’ at a
temperature of 57-C and a pressre of 0mm
mercury. Find s volume st STP (0°C and
760mm mercury).

6 A gindr b wlume of 2 e
(20 10° 7). I contain s at  temperature of
17°C and ' xon prose o0 301 16Ny

ove stmospheric presare (10 10 Nm-?).
okt e . of 2 . th cyinder

hat the density of it at STP s 1.3kgm

The equation of state

‘or a given amount of an ideal gas, the equation of
state is a follows:
2V =nRT ass)

where p is the pressure (Nm ' or Pa), V" the
volume (m'),  the number of moles of the gas



THE IDEAL THEORY

(mol), R the universal molar gas constant (value
831Jmol 'K™') and T the temperature (K).
Note that one mole of a gas s the amount which
contains Avogadro's number N (= 602 x 10%)
of molecules.

Equation 18.5 can be rewritten to include the mass
Mj (kg) of the gas involved. If M,, (kg) is the
molar mass (i. the mass of one mole), then the
number of moles  is given by

Mass of gas _ M,
Molar mass ~ My

n=

(186)

Using_ Equation 18.6 to substitute for n in
Equation 18.5 gives

,V=M_( as7)

Note that M, depends on the particular gas. Also,
i is the mass of a molecule of the gas, then

(Avnwd ) ( Mass of )
number Ny ) molecule m
18.8)
Example a
agasata

() W: lﬁe Dunulum 185, in which M, =32 x 107,
i e e Tos

o Ma 32

N =eure

=532x10 kg
Answer

@ 120, ) 12510
(¢) 384 %10 " kg, (d) 532% 10 * kg,
Example 5

A ylinder contans 20kg of nirogen at a pressre of
3010 Nm'* and at a temperstue of 17C. What
mas of nitrgen would  linderof e same volume
containat STP (0°C and 10 x 10° Nm )7

Method

We use Equation 187, and note that ¥ and My, are
comsams o ghen volume of » patiu g AL
7°C = 90K,

20,50

Baation 157 ghes
30% 100 <V

®
() < 0
AUSTPwe haveps = 1.0 x 10%,T;
the mass M, in the cyinder. S0

273K and require

R
LOX 10V M‘(m)xlﬂ (i)
Dividing (i) by (i) to eliminate the constats gives
30x10°

pmm of LSOMNm 2
Calculate (a) the number of moles of the gas, (b) the

its molar mass is 32.0 x 10°
molecule of the gas.

ke, (&) the mas of onc

Assume. s consant R is

831mol” K™ and the Avogadro constant Ny is

602 107 mol .

Method

(a) We use Equation 185 in which p =15 10/,
V=2x10" =831 300.

Rearmangingfofind n gives us
PV 1St x 2w 10
RT~ 831% 300

=120

0) One ke containe 602 I fcsen,sotat

contains 120 x 602 x 10° = 7.22 x 10°
reicos
() We have My, = 32 % 10, n = 1.2 and require the
s o g Resrrngiog Egston 1 s e
My =My =12 32 107

38410 kg

TO10° = M % 27
My =708 %10 kg

Answer
7010 kg at STP.

Example 6
Neghosevlme
Vomav et
Fig. 181 Information for Example 6

T vl A and B of el volme, e comneted
by a tube of ney volume, as shown in Fig. 18.1.
The vesacls contin  ral miss of 250 10° kg of
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air and initially both vessels are at 27°C when the
pressure is 101 x 10°Nm >, Vessel A is now cooled
100°C and vessel B heated to 100°C. Caleulate (a)
the mass of gas now in each vessel, (b) the pressure in
the vessels,
Method

(8) Let the volume of each vessel be V' (we assume.

s dost ot dm\g(} ot ha s the veses

is el i the o0

e e s presae o p. We uply
Equation 18.7 0 each vessel separately:

Vessel A contains mass My of gas at temperature
3K, 0

e M,A(%) x2m3 @
Vessel B contains mass My of gas t 373K, 50
oM, (A'; ) «m (i)
Comparing () and (i) we see that
Moxx 273 = Mg %373 i)
Now the total mass of gas s 25 x 10" ke, 50
Mot M =25 107 @

Substtuting My = (T3273)Myg from (i) into
(i) we find
Mya = 144 10 kg and My = 106 10 ' kg,

We iy Equation 187 10 the oignal whole
e a empratre 2 0K, pressure.

100 10'Nm Iumzz!/(um»\mdﬂenh
have volume V) and mass M, — 2.5 x 10°' kg
Hence

101 10° % 2

s () cm

Tofiad the sl resce e ke o )

ich My, =
P = L0 (7)m, 0]
Dividing (i) by (v) gives
y Las 10 273
TO 107 %3 25107300
106 x 10N,
Using (i) should give the same answer for p. Try.
this as a ched

Answer

(@) 145 107 ke (A), 106 % 107 ke (B,
(b) 106 10°Nm
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Exercise 18.2

(Asume it the unheral molr s contant R i
S3UUmol 'K and Avogadro's number Ny is
privr

Caleulate the vohume occupicd by one mole of gas

o s e (0°C) and andad
pressure (101 % 10°Nm
2 mol mas of crbon dionide s

010" .ol (s he srmber of molen
‘and (b) the number of molecules in 1.00kg of the.
.

3 The molar mass of nitrogen is 280 x 10 kg A
sample of the s containg 602 x 10° molecules.
Calculate (a) the number of moles of the.

() the mass of the gas and (o) the volume
occupied by the g m @ preswre of
0.110MNm™" and a temperature of 290K,

An axygen cylinde contains 00K of gas at 3

pressure of 0S0MNm™* and 3 temperaure of

a1 s of e st b e o

e m der o 0 30MNm

peratre o 27 1 he molar s of oy

P " kg calculate the volume of the eylinder.

-

5 Two vessels, onc having three times the volume of
the other, e connectd by & maow e of
negligibe volume. Initally the whole is
frartriven presur of 105 10 P
@ temperature of 200K. The smaller vessel is now
250K and the larger heated 10 400K.

Find the final pressure in the sysiem.

Kinetic theory

The pressure excrted by a gas arises as a result of
@5 molecules bombarding the walls of the
container. There are very many molecules in a
typical sampie of gas, and the molecules have a

whole range of speeds. Fig. 18.2 shows the number
of molecules having speed c ata given temperature.

“The laws of Newtonian mechanics are used to show
that the pressure exerted by the gas s given by

p=pcts (18.9)
where p is the density of the gas and <c’> the
mean square speed of the molecules of the gas
(ie. the average of all the values of speed
squared). Now
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Numborof molocles
o speed e

2 covas  somac

<> average o maan speed
T ———
Fig. 182 Distributon of moleculr speeds na gas
Mass of gas _ My
#= Volume ~V

Substituting  in Equation 18.9,

PV =4M<cts =iNm<ct> (18.10)

el i et
molecules and m is the mass of a molecu

By comparing Equations 18.5 and 18.10, for one
mole of a show that the mean
translational kinetic energy per molecule of a gas
isgiven by

mean KE = {m<ct>= 3 807 (as1n)

where m s the mas of a molecule and -~ kis

the Bolizmann constant.

“The square oot of <c> is called the root mean
square (RMS) speed (¢, ) and has theoretical
significance. Note from Equation 18.11 that, for
a particular gas,

Ve x VT 18.12)

Example 7

At cetan time,the specds of sevn partices e as
follows:

Specd/ms ! 20 30 40 50 60
Numberofpariles 1 3 1 1 1
Calulate the root mean square speed ofthe partice.

Method
Tablo 18.1
Number of particles 1 3
Speed e 20 30
& i

We i sqar e sposis e Tble 181). he mean
< specd <c?> s the average of the squares of the
speeds,as follows:

HO x4+ (39 +(1x 16)+ (1 x25)
(1% 36))

—}@+27416425 4 36)
~15dmts?
Note: This is done by adding up the ‘speed squared”
values forcach paricle and dividing by the number of
partices.
To,ind the RMS specd we ke the squr 1ot of
<cth
KMSspeEﬂt,m - VEETS - V154
~39ms”
Not that the ot b ped ¢ & 30ms
most (3) particles have this speed. The average
<c>isfound from the average of the specds,as ollows:
<e>= Huxzm:xn»uxmuxsnuxa”
=37m
Answer
39m

Example 8

Calculate the RMS speed of sir molccules in a
conainer i which the presur s 10 < 10 Pa nd the
densityofairs 1.3k

Method
/e have p = 10° and p = 1.3, Rearranging Equation
18910 find V2> gives

_ 3o
VT3

Example 9

Caleulate the temperature at which the RMS speed of
oxygen molecules s twice as great as their RMS speed
a2rc
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Method
We use Equation 18.12. Thos,since 27 °C is 300K,

T _ VI
Gome U300 V300

2L
Van
Squaring both sides gives
T=4300 = 120K
Answer
e

Exercise 18.3

Eigh e bave e folloving spe:

400, 400, 00,600,600,
Calculate their RMS specd.

The following tablc shows the dstribution of
specd of 20 parils:

Speed/ms ! 10 20 30 40 50 60
Numberof puriies 1 3 8 5 2 1

Find (1) the most probsble specd, (b)the verage
speed, () the RMS speed.
The RMS specd of hlium a1 STP s 1. 0kms
1 Standand stmosphere s 101 % 10'Nm
clculte the densiy of hlium at

“The RMS specd o nitrogen molcules at 127C s
600ms-. Calculate the RMS speed at 1127°C.
1 the densiy of nitogen at STP (LO1 x 10"
and 0°C) i 125kgm ", cleulte the RMS specd
ofnitrogen at 227 C.

-

“«

Exercise 18.4:
Examination questions

(e oo nmber Ny 002 10, g
universal s constant R = 831 Jmol™ K™
s therwise stoted)
1 At o bl 0 of i ts
rare of 100°C presaureof
o Th empertne of i s s
10 150°C. Calelae (e new pressre,

Accor kineric theory, the pressure p of an
ideal gas s given by the equation

p=ipces

158

a

wherep i the s dersiy and <c'> s the mean
quared s of he e

Expre terms o the number of moleculs N,
cath of mass m in 3 volam

1t i s i Kitc theey hat the mesa
kinctie energy of s proportional 1o
Kehin temperature T, Use this asampiion and
the equation above, {0 show that under certain
conditions p s proportional 10 7.

State the conditions under which p i proportional
w7,

A ot of gas has a pressure of 303kPa above
atmospheric pressure at a temperature of 0°C.
“The bottle is et outside on a very sunny day and
e tmpeniure s 35€. Ghen (b
imospheric pressure is 107kPa, calculate the.

new pressure of the gas inside the botile.
[Edexcel 2001)

A flask of volume 9.0 x
vacuum pump reduces the prv:mm. e sk 1o
150Pa at a temperature o

Avogadro constant = 60 x 107 mol™!

‘mokar gas constant = 83Jmol 'K

‘molar mass of ai = 0.029 kgmol |

For the air remaining in the sk, calculate
(@) its density;
(b) the number of molecules present.

[OCR 2001]

Fig 183 shows a balloon being preparcd at
ground-level for a long-distance flight. The
envelope of the balloon is being flled with hetium,

-
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(@) The is made of a thin plastic
material with 4 sibered outer surface. State
‘and explain why the temperature variations of
the gas in the balloon will be less during a 24-
hour period than if the surface
‘material were of a darker colour.

“The envelope, when fully inflated, has an
imernal volume of 10000m’. For take-of, it
s partally inflated with S000m’ of heli
a pressure of 105kPa and a temperature of
293K Both pressure andtmperatrechange
as the into the cool upper

(i) The envelope first becomes fully inflted

temperature of the heljum is

243K, What s the pressure of the
helium at this time?

(i) Sugaest why it is necessary (0 release
bl o he cvelpe = the baloon
continues to

(i) The ballon resches a heaht where the

ly-inflated cnvelope contains h:lmm
ata temperature of 217K and a
o 75k Caeutite the percntnge of
the number of moles of helivm supplicd
at ground level now remaining in the
el [OCR 2000]

5 In the diagram the volume of bulb X is twice that
of bulb Y. The system is flled with an ideal gas
and a steady state is established with the bulbs
held at 200K and 400K.

There are x moles of g n X
How mny moles of g are i Y7
At Bf cx Do

(oCR 2000]

The pressure i a car tyre is adjusted to the
mamtacturer's rconended i before sting
outon & jourey. The tomperatur of the 3t in
e e s then 15C. Afe some
distance, it is found that the. l:mpenlum of the
i the e s 1°C Asume s e o the
tyte behaves as an ideal gas, and that the volume
o tye remains constant.

(a) By what percentage of the recommended

value has the pressure in the tyre increased?

(6) The driver reduces the tyre pressure 1o the
ommended value by leting some. it
escape through the vale. The temperature of
the air in the tyre remains at 41°C. What
percentage of the mass of si originally in the
e
(Hint: the mass of air in the e is
proportional (0 the number of moles of s in
thetyre) (CCEA 200, part]

I is fled

7 A balloon has volume 5.50 x 10 %
0% 10 Pa ot 3

with helium 10 a pressure of 1.1
temperature of 20°C. Calculate:

(@) the number of moles of I
balloon

um inside the
(b) the number of helium atoms inside the
balloon

(€) the net force acting on one square centimetre
of the materia of the balloon if atmospheric
pressure is 101

8 (1) State two quantities which increase when the
perature of @ given mass of gas is

(6) A car tyre of solume 10 x 10’ contains
air al o pressure of 300KPs and
emperatoe of 290K, The mas of one ke
of airis 20 % 10

Assuming that the air behaves as an ideal gas,
the amount, in mol, of air,

(i) the mass of the air,
(i) the densiy of the air.

erve kinctc enery per moecile
(A0A 2001]

9 (a) Give non-mathematical explanations, in terms
of molecules, for the following:
() A gas exerts a pressure on the walls of its
container.
) The gas pressure increases as the
temperature inercases.
(b) A ylinder of volume 30 x 10~ m’ contains
temperature of

ulat

e mambe of molecus o gas in the
container.
(The mass of a mole of oxygen molecules
s D0R2kg,

(i) the pressure exerted by the g,
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Ideal gases and

thermodynamics

The first law of
thermodynamics

In mathematical terms the first law s written as

AQ=AU+AW a9
where AQ is the thermal energy supplied 10 the
system, AU the increase in internal encrgy of the

d AW the work done by the system on
the surroundings.

Thus if 51 (AQ) of encrgy was given 10 a sample
of gas by heating it,and f the gas then expanded
and did 3J (AW) of work (c.g. by pushing a

ton), Equation 19.1 tells us that 2J (AU) of
energy would remain inside the gas. For an ideal
gas this would correspond 10 a rise in kinctic
cuergy,only, o the molecles - o there vould

e an increase in RMS speed and temperature
(see Eaquation 18.11). Note that no change in
potential energy is possible since the interatomic
forces are zero.

Work done by an
expanding gas

Fig. 19.1 shows a gas enclosed in a cylinder by a
frictionless piston. IF the gas cxpands and moves
the piston outwards, the gas does work aga
the extemal force. The oermal work AW is
given by

aw J pay 92)

Fig. 191 Agas expancing na cylnder
“This mathematical operation necds to be ca
out if the pressure p of the gas changes as it
expands. If the pressure remains constant, 5o that
p1 = p2 = p, then Equation 19.2 becomes

AW =p(h; =¥} 9.3
where AW is in
V2= Vy)isinm

ules when p is in pascals and

Example1

e 192shows asampl of s cndsedn yinde

e i o o e 10em Te e

o heated, o ok 250 of energy b ranered 10
e ©

15.0¢m along the cylinder as shown. Calculate (a) the

external work done by the g, ) the e in

internal energy of the s

Method

@ Refering to Fig. 192, we st the foree
xetted by the atmosphere on the piston i given by

FoHxA=1x10°% 12107
SN
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Example 2

When 1.50Kg of water is converted 10 steam (st 100°C)
a stndand amospher presare (101 10°Nm 2,

‘Arvassmarc prosiry
HITRENm

= 10en < 100 % 10 2

) Aterspansion

b
Vol osrease 4, V) - 015 XA
Fig. 192 Information for Example 1

Thus the work done AW during expansion is
AWV = Force F x Distance moved by piston
=10" %015
1501

We could use Equation 193 o calculate AW (0 gt
the same answer, s ollows. The pressurc p of the
Dt el o emonberic peur ot e
expansion. nce (V- 0154,

—»m—
1107 %0155 15 10
~1s0

(b) We have AQ = 250 and AW = 150. Rearranging
Equation 19.1 gives

AU =20 - AW =250 150
001

“Thus as heatis supplied to the gas the speed of the
This would  incres

pressure in
that the piston is pushed out, This decreases the.
density of the gas, and thus (see Equation 18.9) the
pressure of the gas can remain at atmospheric
e The ot fect i ne of bt input being
o do work in puking back the smorpher,
ndtonercme U ray (and s increase
‘molecular specds and Icmp(r.\lul(\nl‘(he

Answer
(@) 1501, (b) 1001
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o liguid 10 vapour state, the incrcase in volun of
a.vl.... what happens to the est of the energy.
Method

‘When the liquid s converted
have 1o push back

o steam, the molecules

AW = p(V: = Vi) = 101 10° x 250
= 0253 1)
The external work done AWV = 0253MJ.

The rest of the energy gocs 1o an increase
energy AU of the water molecules and s given by
Equation 19,

AU =AQ- AW =339-0253
14

This is oesded 10 do werk i separuing b water
‘molecules during the liquid-vapor 1 thus

Becomes potenial enrgy, No uncc ncrty clvang:
occurs because there is no increase in temperature.

Answer

External work done i 0.253 M)

Exercise 19.1

1A fixed mass of gas is cooled, s0 that s volume
decreasen from 40 les to 2.5 s at  consunt
pressure of 103 I0° Pa. Caleulate the external
work done by the gas. Note: 1 litre = 10-*m’.

19.24, suppos that the sample of

£
:

imwards 5.0cm along the cylinder, calculate (3)
the external work done by the gas, (b) the
increase in intemal energy of the gas.

3 Tt ol fsteam is

S0 of water s boled 1

:qudnl\i m v eric pressure of 101 x 10° Pa,

8 510" e ulﬂnm are formed. Calculate (a) the

s of water bold, () the fest ot e,

(©) the exteral work donc during vaporisation,

(@) the increase .mm.n o, ety of

water - 100kgm ; lem’ =
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Isothermal and adiabatic
changes

An isothermal change is one which takes place in
such a way that the temperature remains constant.
“Thus for an isothermal change, Equation 182
reduces to Equation 18.3:

p=pbs a83)

where p mm v, are e and
d V~ are pressuk‘ &ond velume

2 and
othermal hin,

volume a
after the
An adiabatic change is one wmch takes place in
such a way that no heat can enter or leave the
system during the process. This means that, from
Equation 19.1, since AQ =0, any cxternal umk
doe by the gas st Tead 10 3 corresponding

d encegy (and hence 8
temperature Similarly an _adiabatic
compresson eads o 30 incesse i ntesal
energy and hence a temperatur
ediabaic change i canbe shown hat (for a fed
mass of gas

P = ol 19.4)

where py and ¥, refer to and
Vol s and Vs 10 prescae and vohume afer
the adiabatic change and 7 is a constant which
depends upon the number of atoms per molecule
of the gas. Any suitable units may be used for
pressure and volume.

Note that for any change, Equations 18.2 and 18.5
in be used.

By combining Equations 194 and 182 we can
eliminate pressure to get, for an adiabatic change,
7

(GARES 7L 195)

where 7, and T, refer to initial and final
temperature respectively.

Example 3

ure of 760mm mercury is
Spinded adiah ml)y until its volume is doubled.
s

Method

We bae =760 and 7=14 Lt K=V, 20
Yy

Rearranging Equation 194 gives

s () =700 (35

28

yip-2

Answer

Final pressure is 288 mm mercury.

Example 4
“The piston ofa bicyel pump s slowly moved in unil
the volume of air enclosed is one-ith of the toal
volume of the pump and om tempera
C0R), The outet s then seaed and he piston
ey dowt ot 0l xcion. Ko s 0
pison. Find e ofthe air in the pump
Fomcdinly s wihdrawin o 06 ison, woming
hatai s  perfect gaswith 7 [WIEC, pan]
Method

shing-in of the piston results in some air
ng sy i e bocy of the pump. s il
temperature i 7, = 290; let its inial volume ¥,

out the piston indicates an
bt xpnion and s o it pucs he o,
a fixed mass of gas. The final volum:

require the final  temperature r,

Equation 19.5 with 7 ~ 1 = 0.4

the temperat

me.xmg

1y and then used Equation 18.2 1o find

which i cquivalent to proving Equation I

The final temperature is less than the inital value
becan mal work done by the gas, on
expansion, results in a corresponding decrease in
internal energy, hence temperature.

Answer
Final temperature is 152K.

Example 5
A fincd mass of gas,intally at 7°C and a pressure of
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o

- 0%
(o tat i the soue temperare Ty s

to the sink temperature e then
e el i efficiency wil increase.
butit can never reach 100%.)

(b) We have,in one second:

heat supplicd by so
vt sk o by e W

) From Equaton 19.7:
Effcency = 3§ x 100 = 2755
(i) We require 0 From Equation 196:
0:= 0~ W=90-25 =65k

(Note that use can be made of the ‘wast” heat, for
example (o give  supply of warm water.)

0k and
25K

Answer

(@) 40%,
(b) () 28%; (i) 6.5K per sccond or 6.5kW.

Heat pumps

For a refrigerator:
p = heat taken from cool box
work done ¥
197)
& 0
w0

For a ncm pump used to heat the inside of a
buildi

heat supplied to inside of building

(= work done IF

198)

o
W @-0)

Example 7

& bt pump in e b o cotfcn of

performance. of 40

mns{:md from inside Ihc lcfngtrau\v in nrdcr Il\
cep s contents col, clculte

m the ate st which the heat pump operates

(b) the rae at which hea s discharged ito the area

Fig.19.4 Oporation of a hoat pump.

Aheat pump s a heat engine in reverse’. Heat 0y
is taken from a source at (low) temperature Tc
and heat 0, s released into a ‘reservoir’at (high)
temperature Ty, Energy W must be provided in
order to operate the heat pump as shown in Fig.
19.4. Note that once again:

‘The coef

efficient of performance CP of a heat pump
is a useful measure of it efficiency.

Method

(3) We have CP= 40, 0; = 60 (per second) and
el he e /At which e hest pup
operates. From Equn ion 1

W= = 15 (per second)

G-
(b) We requie 0. From Equation 195:

Q=W +Q: = 15460 = 751 (per second)
Answer
@ 15W, () 75W.

Exercise 19.3

A modified car engine uses a mixture of air and
natural gas as its energy source. The temperature.
of the spark ignited cylinder is 220 x 10°K and
the exhaust temperature is 920K, The difference.
between the rate at which heat s supplied o the
cngoe and e work dane by the engie s
S.OMW. Caleulat

(@ the. maximum (Caror) effiiency of the
engine
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6 the s ¢ whch the enine does et wonk
(W is input via the engine source
(©) the actual effiiency of the engine.

A beat i s o truner st trom the
usd of  bulding 1 te imid. I 15KW is
heat pump in ocer 0 eat
b interir at 3 ot of TSRW, cucuate the
coefficient of performance of the heat pump.

Work done during a cycle

v [
Fig. 195 Apressure-volume cycle
The work done by a gas during expansion at
constant pressure has been covered previously
Example 1). In Fig. 19.5 a gas expands from
state A (volume V1) 10 state B (volume V) and
the pressure is not constant. In general the work
done is equal 10 the area ABXY under the curve. 1f
the gas is taken through a cycle of events ABCD
then work (cqual to area
ABXY) s done by the gas as it expands from A
10 B - and work (equal 1o area CDYX) is done
on the gas as it contracts from C 0 D.

T o vork don i the g it he e
thus equal o the enclosed area Al

This undeles the prinipe by which cnergy s
transferred during the operation of an engine.
The air-ful mistur 5 taken through 3 el of
events and work is done by the gascous mixture
which results in energy transfer to moving parts.

Example 8
A fined mass of gas is taken through the closed cycle
ABCD as shown in Fig. 19,6, Calculae the work done
by the gas during this cyce of events
Method
he etk dos by the
arca ABCD. Now:

area ABCD = AB x BC

equal to the enclosed

166

Prossre
pohm

0
Voluma V10 i

Fig. 196 Diagram for Example8

where AB = (8~ 4) x 10 m’

and BC = (4-2) x 10" N

Thus:

area ABCD = 4 x 107 % 2x 10°*
8x 107
Answer
8% 107,
Example 9
%" R
Eu \
> SR
5 5
R R
omarnt

Fig. 197 Diagram for Example
Fig. 197 shows a simplificd indicator  diagram
(pressure-volume cyele)for one eylinder of an engine.
Caleulte:
(8) the work done by the gas on expansion from A to B
(®) the work done by the gas on contracton from C
D
(©) the net work done by the gas during one cycle
ABCD.
18 the engine rotatesat 50 cyces per second and i has
four cylinders, calculate:
(@ the pover gnertd by e ngioe,
Method
(@) Since the gas expands it does work on its
suroundings. Thus:
work done by the gas = area ABXY

1(BD x AD) + (BX x XY)
or § % (AY + BX) x XY
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here. 10 %10,
xy-uu,nsmxm

area ABXY =45 x 10

BX=30x10 and

X}S"x‘ﬂ':\575.|

(b) Since the gas contracts then it has work done on it
Thus:

rea CDYX

% (DY +CX) % XY

where DY =30x 10, CX=20x10" and

XY =350 % 10 Thus
area CDYX =25 x 10

work done.

%350 % 104 = §75)

“Thus the work done by the gas = ~875] (note the
s g igting it work s done o the .
9 Wok ot b the i gtk ABCD
o the enclosed arca
Area ABCD = area ABXY — area CDYX
1575 - 875 =
(@) In one sccond cach cylinder is taken through S0
s and there are 4 inden. Thertore he
power generated is 50 4 = 200 times the work
one o o o o, T

‘power generated = 200 x 700 = 140 x 10’ W,

The power generated is partly used (0 overcome
fricon within the enginclcar system and partly (o
provide a driving force.

Answer

(@) 16K, (b) ~088KJ, () 070K, (d) 014MW.

Exercise 19.4

Pressur i1

Prassue 10

Voluma/1-4m
Fig. 189 Diagram for Question 2

Fig. 199 shows a simplified indicator diagram for
one cylinder of a high compression petrol engine.

(a) the net work done by the fucl
during one cycle

i misture

(b) the power generated by the engine if it has 4
eylinders rotating at 3600 revolutions per

Exercise 19.5:
Examination questions

1 A s mas of gas s heted, 0t s voume
increases from 0.5m’ to 08m’, at a constant
i of 10,10 Py, Caeuae the oxernal
ok done by the gas.
A fived mass of an ideal gas s saled in a container
by & frictionless pison which s free to move. 4001
ofeat s spplis o th et i xpande under 3
consunt_pressure of 25kPa from a volume of
50%107m o a volume of 15x10°m'.
‘Caleulate the change in internal energy of the gas.

~

3 (a) An electric ketlle has a power of 24KW. It

contins boiling water at 100°C. Caleulate
b log it akes t0 bl vy 030k of
(The specific et heat  of

19 Mike")
® \,) 050kg of water contains 278mol of
water and_occupics a volume of
T T 000050 Show that the volume of the

Votume i

Fig. 198 Diagram for Question 1
A fixed mass of gas s subjected 10 the cycle of
pressurc and volume changes KLMN as shown
Fig. 198, Calculate the work done by the gas
during this cycl.

wter vapour it produces a1 100°C &
approvimately 09,
(Amospheric resure is L01 x 10'Pa)
(i) Calelae the work done by the water
pushin the atmosphere back as it furns
from luid int vapour.
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© Toecquton 80
030kg of water process
Comerting i 1 vapor. What e e veen
of achof the thrce terms?
(Ass mol ™ K™)
[Bdexcel znm]
Afised massof anidel g at atmosphric press
i compressd adabiialy (0, oo¢ (it o it
originalvolume, at which point it hos » pressure of
S times atmospheric. If the original temperature
s 21°C,

a0 il o

H
§

8588288

5 A fixed mass of an ideal gas at & temperature of

orig
until the pressure s restored 1o its original value.
s

10

e

Vi

quloll Information for Question 9

per
6 A fixed mass of an ideal gas (with 7 = 167) at a
temperare of 0K, et 1000 it
i volume s sl

in which
et s mew temper
Caleulate the theoretical maximum efficiency of &
steam engine which exhausts into the atmospher
at o temperature of 15°C, if the engine utilscs
high pressure stcam at a temperature of 170°C.

A fixed mass of gas is taken around a cycle of
changes ABCD as shown in Fig. 19.10.

~

Prosur,
ke

Voluma(10°3 1)
Fig. 19.10 _Information for Question 8
Caleulate the net work done by the gas during one
eyele.

9 Fig 19.11 shows the indicator diagram for one

e of an egin. Calcle the nt work done
by the engine per cycl

“Authos e Use 30 = AU + AW forco puposcs )

168

Fig.
a r!tlml engine.

Fig. 19.12

In one particular cycle, 3801 of energy is supplied

when the fuel is bumed and 1801 is lost in the

exhaust gases

By refesence to Fig. 19,12,

(o) ety tha at of he e which e
of the fuel,

(b) calculate
() the energy represenied by the arca of the
loop ABCD,
(i) the cfficiency of the engine.
[OCR 2000, parc]



Section G

Electricity and magnetism

20

Direct current circuits

Electric charge

flow in a metal wire as a flow of electrons, . the

Al sofids, liquids and gases are made of electrons,
protons and neutrons. Electrons repel cach other
and we xplain i et by saing ths cecrons
possess an clectric charge or are ‘charged.

Similarly protons repel each other so they are also
charged. But an electron and proton attract each
other, 5o the charge on a proton is not the same as
that on an electron; we describe the charges as

positive (+) and negative (~) respectively.
The charges on these particles are all cqunlly
strong, although + and — charges have:

Cifcts. Normally he mumber of lectrome n an
objec ol the ounber of proins o tatthe

that it is negatively charged (- sign) while a

deficiency of clectrons (a surplus of protons)

positive charge (+ sign).

Two well-charged objects having the same signs

repel each ol pposite signs attract. A
eharsed objctmay alo showa weak atracton on

an uncharged abject,

‘The unit for current s the ampere (A), defined in
Chapter 23. Current size 1 is related to charge q
‘moving through (entering and leaving) a wire in
time £ seconds by

7= L and 1A= (e 200
Equuli\m 201 defines the coulomb as 1 As.
current flow s taken to be that of
posive charge flow, ie. opposic 1o tat of
electron flow.

Cari

If carriers, e electrons in a metal wire, are
moving with an average drift velocity along the
wire of v metre per second, then the current is

r velocity

1=n4gy (202)

where n is the carrier density (number per m'), A
i the cross-section area of the wire (so that . is

surplus or deficiency of appmxlmalth ]

o'
thousand million clectrons.

Electric current

Acurrentis a flow of charge. In a metal wire many
electrons are frec 1o move, so that a current can

the carriers per metre length of wire) and g i the
carrier.

D vecsty v
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Example 1
How many clcirons are pasing through a
e e 1A g he chrge
Gamed by cach lectrons 16 10

Method

1=107, g=16x10""C; let time
e of s b .U
201w

15 and the
Qi (Equation

L0t a8 10
PR U,
6 077
o =625 10
Answer
62 % 10
Example 2

Caleulate the mean velocity of clectron flow (the drift

uniform cross-section_arca of 1.0ma’,
charge = ~1.6 x 10°1°C.)

Method

63

(Equation
m g =16x107°C and A

<0

125107 ms™ (f we assume an accuracy of two
nificant figures).

Exercise 20.1
1 I certin semonducting matcial th curtnt
carriers cach have a charge of 1.6 x 107" C. How

e the cconducior per sccond
onA?

How many free electrons are there per me
Tength of wie f 3 curvent of 20 ries e
electron drif v

(Electronc charge = 1.6 > "m

A wniform copper wire of cireular cross-scction
has its current trebled and its diameter doubled.
By what factor is the drift veloity of its frec
electrons multiplied us a result?
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Potential and potential
difference

The pocoral of s place may b hought of s 5.
atractveness for electrons or unattractiven

for posi arges. A place where there is a
High coneenraton of lobirons or which has a ot
of electrons near it will have a low potential.

‘The difference of potential (PD) ¥’ between two

places is defined as the work done per coulomb

of charge moved from the one place to the
ther.

w
v=r 203
g @03)

where W is the work done (.. if chargeq

moves from lower potential (~) to  higher
potential (+)) o energy obtainable from the
movement (€., if negative charge ¢ goes from —
10+ pl

“The unit for PD is the volt (V).

The potential of a place measured in volts is
the ¥D betwean the place coneamed aud
som ce_point, usually taken 10 be a
T fot away from any el:cmc harges (ic.
2 i), or othervio the Earh. In other

these places may be taken as

Teto potential.

Electric current flows spontancously from a
higher potential place (+) to a lower potential
place (<) if the two places are joined by a
conducting path.

Ohm'’s law

“This law states that the current / through a given
conductor is proportional to the PD between its

s, provided that its temperature does not
change.

Tavor k.

= Constane

20.)

“This law appl

1o metallic conductors and many
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Resistance R of a
conductor

“This is the opposition of the conductor to current
flow through it, and it is defined as the PD
needed across it (between its ends) per ampere
of current:

208)
“The unit for resistance is the ohm (£2).
Resistors

These are devices for providing resistance to the

Often a current s produced by use of a vollaic cell

termings ae jined by a conducting ot ic.
when a complete circuit is formed. (Fig. 20.2)

‘The current obtained from a voltaic cell is direct
current (DC) because its dirction is constant,

Resistors in series

When o resisances Ry and By ohm are
ected as shown i ey are in
e andth vt reshnants . where

R=R+R; @06)

fow of current, Some variable resistorsare alled g, gt R, carry the same current,
rheostats.
. @ s
A thermistor i a temperature sensitive resistor.
is a light dependent resistor P \—|I v
(photoconductor). oV’
i
P I3 "
Electric circuits P
Yy —
Cument ] S Symbol for a voksic cell
5 f ®) inparael
Eackontion
Show cooacirs
et ta
Syt e
Oy ———
—ij— —Jp—
sayorzco ety of v ot
e~ F1.202 Rosistorsinsarios and parall
[ ——— .
" 1ces in parallel
I
Yov
ot this_ amrangement the resistance of the
" combination is given by
i 3 o
Comactng s down 2 gt s R ke a0
Fig. 20.2
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In a parallel combination the PD across one
resistor is the same as that across the other, but
the total circuit current / in Fig. 20.3b is shared
between the resistors.

Example 3

Calculate the current through, and PD across, each of
the resistors n the circuit shown (Fig. 20.4).

Fig. 20,4 Circultdlagram for Example 3
Method
The resistance of 362 in paraliel with 62 is

We sce that the ciruit can be regarded as 800 i series
with 2092 Circuit resistance is

R=R,+R;=80+20=100

80 - 060A

Note tht we knw only one PD, camely 60V, and to
o mst s ¥ = 60 wilh the ot
resistance. TLis the 109 the PDis 60V.

The current through the 809 resisor is 1, which is
060A.

PD across the 8042 (using ¥ = IR for this resisior now.
thatits current s known) is given by

V=06x80=48V
To obtain answers for the 302 and 6012 we can say
cither:

PD across the 300 and 600 is 60V ~ 48V = 12V.
The current I, through the 3.0
Iy =1230=040A
and for the 6.0 the current s is 1260 0r 020 As o (in
of 30 and 6. for the parallel
resistors) we can say:
A common emor s 0 fore that this s IR, R

172

The 3,00 and 609 are in the ratio o 1: 2, so that the
easicr route for the current (30%) will carry two parts
of the 0.60 A while the 6.0 route will carry one part
The 6002 carries one-third of the 060A, namely
020A;the 309 carries two-thirds, namely 040 A.
Answer

060A, $5V;020A, 12V;040A,12V.
Exercise 20.2

1 AP of 60V & maisined scom o s
of two resistors A and B. A is 2000
B 400 o

(a) the curreat that should flow and

(b) the expected PD across resistor A.

A PD of 30V is maintained across a parallel
combination of 2012 and 302, Caleulate

(3) the current that the voltage supply must be
ding and

(b) the current through the 202 resistor.

3 Caleulate the current ach resisor and
e ¥D scrss tach n ¢ clrak shown 1o
Fig. 205,

20v
0
—
00
—

Fig.205 Ciruitfor Qustion3.

Resistivity p of a material

he resstance R of aconductor is proportonl o
its length I, inversely proportional to its area of
cross-secti

of th X
which s defined by the following equation:

R=pl

5 (208)

The unit for p (which s given by p = RAI) is
m.
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The term ‘conductivity’ s of a material is used for
the reciprocal of p so that

209)

Temperature coefficient
of resistance or resistivity

“This quantity is denoted by 2.

For many materials, ¢.g. a metal, a conductor's
resistance increases steadily with increase of
temperature in accordance with the equation

a= "R;“‘;n ocR=R(1+ap @010

where R

Example 5

A coil of wire has resistance 6,000 at 60°C and 52592
at 15°C. What i its temperature coefficient of
resistance?

Method
R=Ry(1 +30) /. 600=R(1+60) and
525 =Ry(1 +115)

525 _ Rofl + 153

600 ™ R(1 + 60)

Canclling the Ry factor and cross multiplying gives
52543151 = 600 4 90z

and z is the

Ry is the resistance at 0°C
ficient of resistance of the

temperature coefficie
material.
The unit for 2 is K
We can also write.

P = po(l+20)

where p and p, are resistivities at temperature 0
and0°C.

Example 4
Caleulate the lngth of wite of 10mm diameter and

5.0 % 107" 2 resistivity that would have a resistance
o
Method
R
P R0
p=50x10" d=10x10"
107"
TIPS

5057910
=T Soxi0e

3150003 = 600525
2975 L goo3Kt
Answer
00033K ',
Exercise 20.3
1T el oty of g s
510

“om affecied very fitle
emperiun hange, e e riisanee of
20m of manganin wire of 1.0mm diameter.

2 The sty of mid sie i 15x 10 40m at

temperuture coctficient is
201055 Gt e ey o -

3 Accrtan ool of wire has an elctrial resstance of
249201 10°C and at 20 C the resistance inreases
1o 280, Caleulte the temperature coeffcient of
resistance for the metal of which the ol is mad.

Electrical heating in a
resistance

When curent lows thoagh s restancs here 12
POV cross mc resistance and. for Q coulombs
passing lectrical pulcmml energyis lost
(work 0 o done) this bespming aternl cocrgy
of the resisting material (its temperature has
isen). Since V= W/Q and Q =1t (Equation
203 and 20.1) we have

W=y 2011

. the heat produced is VIt where  is the time for
which current flow

173
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Using R = VI (Equation 20.5), we can also write

@012)

2013)

The work done per second or heat produced per
second is the power P and

p-w(.. = o)

n 2014)

‘The unit for power s watt (W). 1W = 175
The eqresion poner disipated (n 3
resistance) s often means
produced (per second)’; ot remins v bt he
heat normally spreads and escapes from the
place where it is produced.
The kilowati-hour (product of KW and hour) isa
unit for energy and is the quantity of encrgy
nverted in 1 hour when the power is onc
Kilowatt. 1_kilowati=hour = 1000 watt x 60 x 60
seconds = 3600 x 10°J = 3.6 MJ.

Exercise 20.4

Caleulate the heat produced in a 109 resistor
when a current of 20A flows through it for 1
minute exactly.

Caleat the cergydispaed by a 100wt amp
for 1 day. Give the answer

(@) in killowatt-hours and
(b) in joules.

Caleulste the heat produced in $ minutes in & pair
of 102 resistors connected in parale] with a PD of
20V across the combination.

Electromotive force and
internal resistance

The PD between the terminals of a cellis caused
by a chemical action which stops when the PD
reaches a value characteristic of the type of cell,

called the EMF of the cell. EMF stands for
electromotive force, although it s a voltage not a

174

force. When the cell is producing no current, .

itis on open circuit, the terminal PD ¥ equals
the EMF E:
¥ =E, on open circuit 2015)

When a current is being produced, the PD falls
from the EMF valu E, the chemical action starts
again and the terminal PD V' that is maintained
isless than £ by an amount called the ‘lost vols'.

working. The lost volts equals 1 x r,so that

E-V=Ir 2016)
Eiher of the sttements £.= 1/ when 10 ot
£~V = Ir may be used to define £, but a more
stsuciory efinion s

017

where Pis the total power (I°R +1°7) sipaed
in the circuit resistance R and the intern
resistance r. This means that

E= % =R+
E=Vailr
which agrees with Equation 2016 and gives
E=Vwhen! =0,
For caleulations a cellor other voliage souree can
b rgarded s 3 el of ero il rsistanes
wilh 3 sparie resistance ¢ in srcs with i
(Fig. 20.6a).

[ [
] —
S YO

(0 Tmecet —

©) e compiee vt
Fig. 206 Collwith EMF £ and internalresistance
A cell represented in this way is seen in the circuit

of Fig. 20.6b. This circuit agrees with £~ V' = Ir
and £ = P/ and it i also seen that

E

! R+r

2018
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Example 6

A cell of EMF LSV and interal resistance 108 is
ccted 10 0 S0 resstor 10 form o completc

circit. Calulate the current cxpectd, the terminal

PD and the power dissipated inthe cxternalcircuit and

inthecell

Method

Asuiable dingramis shown i Fig 207,

roi0n E-isv

A-soa
fosod,

Fig.20.7 _Circuitdiagram for Example 6

oW E = 15,R = 50andr = 10,

502510 =125V
The powerin the 5002 s 1°R = 025 x5
Aliernatively, this power equals
VI=125%025=031W
The powerin the 100 internal resistance is

Fr=025 %10

~ 00625 W

Aliernatively, this power equals lost volts squared x

internal resistance. Al the total power I°R + 1r can
becquated 0 F x /.

Answer
025,12V, 031 W, 0062W.

031w,

PD across R x Current =

Cells in series and parallel

‘When cells are joined in serics, each cell adds its
EMF o0 the total EMF if its + terminal connects.
10 the — terminal of the next cel. It subtracts if —
joins on to —. The internal resistances add.

For identical cells (same E and r) connected in

rs in parallel (sec
Equation 20.7).

Maximum power

hen]of el oef thec{ratage sourec e
internal resi 7, is connected to a ‘load"
esitance (R in Fig 2060), the current trough
R is given by EAR+7), the PD across it is
ERR'+1) and he power disipatod o s caual
roduct of these. The current is at its

mgm hen R & i he FD s ige when R 7
d, shown, the power is greatest when

R
Example 7

Withreerence o Fig. 207:

(a) What value. m\ul\l be needed for resistance R in

order that maximum power shoul i from
the cell?

(b) Caleulate the masimum power valuc.

Method

(@) For maximum dissipation in resistance R
this resistance must equal the intemal resistance,
which is 1092

€ The e rsance o thecelt el henbe 207
nd e EMF20 or 15720 or
075A.

powerinRisP =
Answer
(=) 1092 (0) 056W

=075 % 10 = 05625 W

Exercise 20.5

1 A 30V banry ting an el resisanc: of
200 s connected across a 4,082 resisor. Calculate
{he P between the termimls of the bticry.

2 A 30V battery is connected across a parallel
‘combination of two resistors with resistance valucs

of 109 and 402, The total current provided by t
battery is measured as 025 A. Obtain a value for
the internal resistance of the battery.
A certain large 6.0V batiery i used 10 produce a
current of G0A. () If this current s oblained
when the load resistance is 0.08, what is the
internal resistance of the battery? (b) What would
the maximum current be that could be drawn
from the battery? (¢) How much heat woul
produced per

.
istance i ssumed to remalconsta
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The moving-coil meter

‘e commonest ype of meer s he ‘moving <o
design. s actior ied in detail in Chapter
23" s Kind of meter can b very senive and

that the pointer  deflection  is
proportional 10 the current.

A galvanometer is a sensitive instrument that is
suitable for detecting the presence of a current.

Conversion of a sensitive
current-measuring meter
to measure large currents

We kaow thtthe mete s rstnge 500 has
10mA through it. Therefore the PD i

0 01000 ol . S0mV. Because 1§ lo he
PD across R and we know the current through R, we
can deduce R from R = V11

5010
=990 107
s0

190
- 00251250 0r 002501

Answer
00250025 <1072,

Meter resi: e

This range awtiplcaion & common pracies

ith sensitive moving-coil meters. A re:
o Sufable value i fned i porael
sensitive meter. This resistance is called a
“shunt.

Only a fraction of the current to be measured
passes through the sensitive meter. How the
shunt achieves the required conversion is best
explained by an example, as follows.

Example 9

Calulae the shunt resstance required to comvert a
T0mA movingcol e s s 500

intoa0-20Am

Method

Fig 20,11 shows theposition of the shunt ad llstates

th situstion when the curent fo b measured i t i

i . nancly 20A (2000mA). The meicr

must then give full scale deflection, ic. 10mA flows
dhrough .

O—F
" .
o
SR —

The current through the shunt resistance R must be
2000mA minus 10mA, . 190mA.

The resistance of 4 current-measuring meter
should be so small that the current to be
measured is not changed when the meter s fitied
into the circuit. A shunted milliammeter usually
saisies i requizsnot. Incomcest a vlmeter
should have as high a resistance as possible

Voltmeters

“The common type of voltmeter s the moving-coil
design.

The moving.coil volmeter works on the
principle that a PD can be measured by
alloving it to produce » coreot, which s
measured. A larger PD gives a larger current
For example, the 0-10mA meter mentioned in
Example 9 could be used as a 0-S0mV meter
but it would be a sery poor vollmeter becuuse
i rsisance isonly 30, When it i conm

3 e, perkaps 10 measure the D
etmeen the < of s cera resvor, the 50
would be in parallel with the resistor and would
completcly change the current through, and
thercfore the PD across, the resistor before the
measurement is made. A good voltmeter should
tance that is high compared with the
circuitry under test. Satisfactory voltmeters can
be obtained by having a high resistance fitted in
series with a sensitive moving-coil meter. This is
shown in Fig. 20,12,

“The series resisor s often called a muplir.
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Example 11

2 A 12 bty of egighlc il rsance
5012 and a 100 resis
i i the PD acron o e SO0 esistor o (0 vhen
mz-ls\n\'d by bighetace e, () vhen
ance of 2012 s connecied n

Pomlel it the 5082 resor?

Exerc ise 20.9:

on questions

Fig.20.14  Circut for Example 11
Caleulate the PD between A and C in the circuit of
Fig. 2

Method
We have 200 in paralicl with the 5.0 Using
R RR(R, + B (Faumion 207 we gt
VxR
Ve R Ry
(sec Fig. 2013) and in this cquation R, = Ryc,
V= 18V and R, ~ S0
1840
Vac= WX g0y

i compaes with 0V when the o 31 igh
resistance o open circuit . when Ryc = S012)

Answer
BOV.

Exercise 20.8

The current 1 through a metal wire of cross-
sectional arca A is given by the formula

I=nave

where ¢ is the electron
Define the symbols n and v.

arge on the clectr

Two pieces of copper wire, X and Y, are joincd
which are_shown as dotted
disgram. The cross-sectional area of X is
double that of Y.

Inthe e blow. i v derc thelucof

P i "ot et o o
Tt and slomgide 1 xpbin your swer,

C——
- .
e
2 4o carc s s st to e ks
e Ty s o . o
, ook e
Fig.20.15 i . The resistivy of

1 With reference to Fig. 20.15 cakculate the potential
difference berween points
uery

copper is 17 10°* . Show that the resistance
of each of the conductors is 085

The operating current of the shower s 37A.
Caleulate the total voltage drop caused by the

points X and Y (2)
neglighle internal resistance and
()i the baterys 200,

pplying the shower. [Edexcel 2001, part]
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3 Fig, 2016 shows . nerork of nine Wenical
esistor has resistance 612 The
et single resistor is

Fig. 2016
(2) Find the total resistance of the network
between the terminals X and Y.
(b) Find the maximum safe current which can be
supplied to the network between X and Y.
[CCEA]

Fig. 20,17 Diagram for Question 4

Calulate the resistance berween A and B i
Fia 3017 given that ¢ ofthe thre resstances
o

5 A coil of copper wire is heated slowly in an oil
bath A constant potensl ifirnce o 20V is
‘maintained a current
nd temperature are e and w,,n plotied
as shown.

tomparaure /¢

(@) Explain, in terms of the motion of free
electrons, why the current decreases as the
temperature inereases.

©) ) Fndthe eatanes of e col st 0°C and

(@) (‘.nlcuhm e e coefficient of
tance of copy [WIEC 2000]

180

6 Four resistors are connected as shown.

0
. @
x v

H £ "

Between which two pini s the resance of the
combination

APandQ B Qands
C Rands D SandP

[OCR 2000]

7 The graph shows how the resistance R of a

e depends on vmpermate

n terms of the I\elmm\ur o he maeral of the
thermistor, expl atively the
shown on the

A student connects the thermistor in series with a
3300 resistor and applies a_ potential difference
of 20V. A high resistance voltmeter connected in
paralll with the resistor reads 0.80Y.

I m—.l

Caleulate the resistance of the thermistor
The student now increases the upplied pd. from
20V (o 20V, She cpecs the volimeter undmg
0 increase from 0.80V to 80V but

0 find that it s greater. Explain this,
[Edexcel S. H. 2000]
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14 A de. power supply of el 60V and negligible
internal resistance is used with a potential divider
10 generate an output voltage of 4.4 V. The circuit

s shown in Fig. 20.23,

Fig.2023
The resistor Q has resistance 22001 The output
voltage is obtained across Q.
(i) Caleulate the resistance of resistor P.
@) A vokmetr of ptanee s now
esisor o Whet i e
eadiog o0 the voitmeter
" [CCEA 2001, part]

15 A technicion & ahed t0 conint » pote
it 10 eliver an outpet VEAgE o
e w8 attery of emf. 30V and
negligible internal resistance. T conserve the fie
f the battery, it is desirable that the
drawn from it should be about 10A.

0 Draw a dagamof s it ok o i
ery

terminals T+ and T- 1o indicate their
.

0 Aol restsac LOKD s sowonpetzd
across the Explain why the
ot volage and e et Frpistiy
battery are affected by making i
Detrmine the new saucs of oupt vongs
and current drawn [CCEA 2001, pan]
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Electrostatics

Electric charges

Charges have already been discussed in Chapter
0.

“The SI unit for charge is the coulomb (C).
Force between charges

The force F between two small conducting

spheres with charges 0, and Qs is given by
Kdiy ey
dmert

where ris the distance between the centres of the
spheres and ¢ i the permittiviy of the medium in
which the spheres i ¢ for vacuum is denoted by
29 and ¢ for air is 50 close 10 ¢ that we take it a5
equal 10 co. The ST unit for & is farad per metre
(Fm™") (see p. 191).

The above formula applies also to the forces
between any charged objects provided that their
sizes are small compared 1o the separation r i
they are ‘point_charges'. The fact that F* is
proportional to 117 is called the inverse square
oot clecrosiatcs

Example 1

Calculate the force between two smn\\ mclul spheru
with cliarges +1.0  10°C and +

e e e s e T

is8.9 % 10 "Fm ", Is the force attractive.

s
Method
The foree s
Fo @0 10107 x90 < 10
e 8910 % 03

Note the consersion from centimetres (o ST units.i.
metres

«0

=
=89 x 107N
=089
Note t0a that it may be found helpful to collect together
the tens to various powers, as shown in the equation
above.

The force is repulsive because both charges are
itive.

Answer
0.89 4N, The force is repulsive.

Electric intensity

In the vicinity of any charge Q there is a region
within which other charges may be attracted or
repelled h, it Thi egion i called the fied of
the charge Q.

wrength o any pum( in s il by e
value of Flg, where g is the size of a small
charge placed at the point concerned and F is
the force it experiences duc to the prescnce of
ratio is called the clectric intensity E of

Q.
the field:

E

@212

2l

“The unit for £ could be NC™' but volt per metre
(sce p. 185) s preferred.

183
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Intensity E due to an
isolated charged
conducting sphere

[

Forc o il charg g be ok bo

Fig.21.1 ntonsity dueto acharged sphore
InFig. 211
Bom
9 sz @13)
E=—2_
mert

“The same formula applies if Q is a point charge.
Electric lines of force

) D 0. posiveIolted conductng sphers

N e

Uit bl
Fig.212  Electrc lines o force

Example 2

Poin charges are ocated i a ot A and Bas
shown in Fig. 213. Caleulate

imensiy t P and the drcsion o e iy 1Tak=
V1590 % 10°m

e

Jzxire
Fig.21.3 Diagramfor Example2
Method
The intensity Epy at Pduc to the charge at Ais given by
Eam Q90100 x 36 107
T 0.03

“This gives
Epy = 36000V

“The intnsity Epy at P duc 0 the chargeat B works out
by the same method to be 18000V m

i dtiwcocn of Sy Epy 1 dhown by e

s in the diagram and the combined effect
(lnlensny r,; at P is found by vector addition
lclogram rule, sce page 20). Since Epy and

s verpendicaas hi sedion can be done by
use of Pythagoras' equation.

£y = 360000 + 18000° =
whenee

=402 10V
o i the dircton of £ we have tan = £1% - 03,

1620  10°

This gives z = 266
Answer
40KV m~, 27" to direction AP, 63" 10 PB.

A relationship between

force experienced by a small positive charge.
Lines of force are lines which show the directions
of E in an clectric field. Two examples are shown
in Fig.21.2.

184

ity and

Consider first a small charge +q being moved
from close to the negative plate in Fig. 21.2b up
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10 the positive plate through distance d. Let the
D) Genieca o plaes ol amd i ity
The work done s IV . 45) and equals
Pyl Al by deftion o PD (e p. m

Vs (Equaton 203). Hence Egd = Vg
Vid.

L2
Intensity £ = % @1
i an ot 1 e i

E in volt per metre. Example 3
lstrate the us of this ormula.

Work done when a charge
moves

‘The work done (I¥) when a charge moves in any
eletric ik ca be deducedfrom Equaton 203
in Chapter 20, which shows that I¥ = g/, where
qis the charge moved in ulombs. Th
useful equation when you have an- clectron
accelerated in the electric field between parallel
plaes, staring at st a he negive plae. The

would be obtained by using the

Tormala
W = F xd (Equation 6.1

chapter 6)

it~ (Equion 2.2

and E %(Equau\m 214,

Using e for the charge of an electron the wor
doneon the cetron i thereloe e Kiere
energy it gains, is

Work done =" @15

Example 3
A uniform clctric field is obtained berween tw
parallel plates by using a PD of 10V and a plate
separation of 20mm.
An clecron ntaly at rest close o the negative plate i
moved by the icld o the poitive plac.

e:

(@) the intensity of the field

(b) the force acting on the elect

(¢) the speed of the clectron as it arrives at the
positve plate.

(Electron charge ¢ = 1.6 x 107, electron mass
107 kg)

Method
- VM
@ E=Y =gl _soxi0y
©) Forse F = Ey = Fe = 50 10° x 16 107"
80 10
© Work done & W=ck (Equaion 215)

10 = 1.6 x 1071, and this equals
the kinetc cncrgy 1mv? (s Chaptr 6).

Therefore
3513 10

andv = b
An stemativc way of g i 10 et the
acceleration a from

(Bqaton 55 in Chapir 5 nd ence v
V= 4+ 2as (Equation 5.3).

Answers
@50 16V ()80 107N (©) 19 % 10°ms "

Potential at a distance R
from a charged sphere or
point charge

Itis common, in GCE work particularly,to take as
zerofor potential measurements the potential at a
large distance away from any charge, ic. at
infinity.

The pulenml difference between infinity (e.g. at
far right of Fig. 21.1) and position P can be
shown to equal Q/drcR, ic.

Potential at Pis V= < e
mer
Note the  (not ),
Example 4
Pointchargesof -2.0 x 101 Cand ~3.0 % 10°# Care

located in air at A and B which are 4.0cm apart
Calculate the electric intensity and potential midway
beween, A and B. (1fdneg may be taken a
90x10'mE"!
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Method

We are interested in a point which is 20cm or
20 107 m from A and from

The ity there camed by the 20 10 n
enby E

give o and so equals

20510590510 46 iyt
X0

The direction of this intensity, because of the negative.
charge at A, is from B (0 A.

The intensity a the midpoint due to the ~3.0 x 101°C
charge at B issimilarly

30107 % 90 10°

o675 x10' Vn'!

The direction of this intensity, because the charge at B
isnegathe, i onards B

The ol ity s the mldpaml cwmed by the o
charges is ob ntensities
vectorially, . it comdestiosof et rtcions

Toul intensity is, in the direction towards B,
675 % 10"~ 45 % 10"V~ or 225 % 10' V' To
o sgnificant figures we have 22KV m .

The potential at the midpoint due (o the charge
~20%107°C at A s given by ¥ = Qldzar and so
cquals

210719,
20510

The potential du to the 3.0 x 10 Cat Bis

or -0V

or-135V

3010790 x 10°
2051

Since potential is a scalar quantity (a0 direction) we
add the two contributions (0 the potential algebraically
toget

90+ ~1350r-225V

“To two significant igures this s ~022KV.
Answer
22KV, -0.22kV.

Exercise 21.1

(Tiestorsitabe 89 10 ™ unless otherwise
stated)

Calne (o) the forcs brveen two carges of
and 160 on point conductors 0
apxn i air. (b) What size of charge on a third
point conductor placed

two conductors would result in doubling of the
magnitude of the force on the 1.4nC charge:

7@ Gt ) e s

1 at a_point midway
|\()|m o chrges of 1107 and 10"+ which
20em apart in air.
®) To produce a0 qualy e lsi sy
idway_berween two largearea, paraliel
Pt 20 par i s, what P> would be
Reeded between the plates’

3 When a charge of S04C is moved between two
points P and Q in a uniform cleciri field, 100,
of work s done. What is the potential difference
between P and O

4 Caleulate the potential at the surface of an
solated metal sphere carrying a negative charge
of 20 10°*C and surrounded by air, if the
spherc’s radius is 20cm.

How much wor done in moving o
e g of 16« 10C o he s
Satce 103 poim 30cm further fom the cenre?

5 Caleulte the electric potential and electric field

strength (or intensity) at C in Fig. 21,

the

ity and

20-0c-ca
The e

torc
Fig.21.4  Diagram for Question 5

6 An clectron s intalyat rest n a unform clectric
field of intensity 0.50 x 10° Vi
“This field causes the clectron to have an acceleratio
a and 10 reach a speed v after it has travelled a
distance of SOmm. Obtain values for @ and v

“souc

6% 107" C, electron mass

Eceron chgee
1

107 k)

Exercise 21.2:
Examination questions

‘Where necessary use the following valucs:
Permittiviy of free space () = 8.85 < 102 Fm !
Elcctronic charge (¢) = 160 x 10°°C
Electron mass (m) = 9.11 x 10" b

142 (value also obiainabie from calculator).




1 This question s about the deflection of an electron
beam near a charged sphere in 4 vacuum.
(6 The voluge beveen the anode und co

ode
cceon gun s 2500V, Show hat he
elz:lm,us are emitted from the gun at about

electronic charge, ¢ = 1.6 x 101 C
mass of electron, m, = 9.1 x 10" kg
(b) A charged sphere is moved towards the
clecton gunaong» e perpendicalar o the
direction in which ¢l
(Fis 215) When the ceme o he sphere
about 034m from the gun. the path of the
beam is an arc of a circle.

[

Fig.215

@ St whethr h spere i poc
ively Expl

reasoning.
(i Explain why the speed of each clectron
ins constant while it is following a

(i) Show that the centipeta force on cach
cectron is about 2.4 x 10°"
() Hence calculate the strengih of the

cletc fed 034m trom the canre of
the spher

() Hende caleuate the charge on the
sphere.

=89 x10Fm
[OCR 2001]

2 A beam of electrons is directed at a target. They

ccleated from rest through 12em i 3

uniform eletric fild of srength 75 x 10°NC .
e i i thwgh whic

Ih decirons v el

Calculte the masimum Kinetic cncrgy i oules of

one ofthse letrons.

Calculate the masimum speed of onc of these

cecions, [Bdexcel 2001, par]

@ An  dectlc el may be produced i he
two charged paralll plats.
Fie2 B st ach plates.

Fig.216

On Fig. 216 sketch the
between the plates.

(6 An ot poit charge o g 0 &
situated in 3 vacuu a distnce of
10 10" m from mu s, e e
po«:mm.sumc
(i) Explain_ what is meant by electrica

,m ial at a point in an electri feld.

(i) Electric potential may be a positive or
negative  quantity. lain  the
sgrieace o e pusis wibe of
potential in this

i) Caleln the magniude of Q.

(i) Complete Table 211, showing the electric
potential I at various distances  from the
solated point charge of magnitude Q-

tem of fild lines.

710 m [ vacT
10 144
20
30

(4) An electron of charge ~1.6 % 10°C is

determine the work done in moving the
electron.

s i ok perfomed gent the Gl
of the poi ‘magait

e e e e vk G
reason for your answer.  [CCEA 2000

& A simple model of a hydrogen atom consists of an

clectron moving at constant specd in
path around a central nucleus (proton).
o) W down an cpresion o e e
n the clectron n ts rbi.
(6) 1 the speed of the electron i 1.1 x 10°ms”!,
calculate the radius of the clectron's rbil
C 2000]

187
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@ it charges of 420,C and +40,C e

W and X respetehy s
tance between

v Fig. 217,
charges is 20mm.
2z ~aguc
PR Tr=——

Fig.217

© By wly Ue 140,C chre
(i) Find the mognitode and gireton of he
foree on the +4.0 iC char
What & the force on the -3.04C charge?
Define eectric potential at & point in an

the arrangement of charges st
U culele the o
I cnergy possessed

by the
i< mm
(i) W Al;.cmm W,
e 1201C e ©
o ¥, 30 6 he igh of X : '
fied there (Fig. 215).

Creae e chnge i zla:ms potential

of the

nergy of
) W the +20,C .mm S e st W,

the +4.04C charge

s now moved along.

the are of a circle of radius S.0mm from

Yio

204
W

2!
S

Fig.219

somm

point Z, us shown in Fig. 219, WZ
i at right angles to WY.

Find the work done in this operation. Explain

your answer.

[CCEA 2001, part]
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Capacitors

Capacitance

fatio of charge  stored (on cach plate) o the
ial dif it

@) Gt sy for capactr

e

Capacon il ety bscharged witcharges +Q and 0
o e concuciors and O () wh s 059 PO

1 Capactor dscharging

atorshoaing curers

Fig.221 Capacitors

A capaior consis f tun conducing surfaces
close together, two metal sheets for exampl,

in Fig. 22.1. The surfaces are often described as
‘plates’. When the capacitor is charged as in
Fig. 221 it has cqual + and — charges on its
plates. The electrostatic atiraction between the
opposite charges makes it easier t0 build up large
charges on he pltcs 0 that charges of useful
izes are stored in the capaci iy 0
store charges'is called the ‘ca of the
capacitor and is defined as (or sy by) the

=2
c=¢ @
The S.1 unit for capacitance i the farad (F).
Capacitances are mostly met in microfarad (4F)
and smaller sizes.
A capacitor continues (o charge unil the p.d.
between its plates equals the applicd p.d., for
cxample, of a battery.

Energy stored ina
charged capacitor

This equals OV because, during charging, Q

coulombs of electrons have in effect been tak

from one conductor of the capacitor to the other

ihrough a PD which was niially zero, is fnally
Y, and bas an wersgo vk of 4. Noi it

because 0 =CV we can also write QI as
1o'c.

Energy stored = § 0 222)

Example 1
Acapacitor i charged by 20V DCsupply and when i
i dacharged through  harge et .3 ound tohive
camed  Share of 0. Wt s s cpucanc, and
How much encrgy was ored n 17

Method

= 0254F
Energy stored = 10V

189
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=500 x 20
=50x10%)
O, sing the formula § CV, the energy is
102510 % 20°
This equals S0 x 10 0r 5.0 % 10°° ).
Answer
025,50 % 101

Experimental
measurements of
capacitance

Electric charge meters are now available so that it

is convenient to charge a capacitor using a known

PD ¥ and then discharge it through the meter to

messure the charge 0. Then C an b caeated
mC = QIV.

e repeated discharge method s ilustrted in
Fig. 222.

Veratng swich of requency |

Corentmeasuring meer
Fig. 222 Measurement o capacitance by te repeatd
discharge method

In this method a switch, usually a reed switch
operated by an alternating current of frequency
1. causes the capacitor 1o be charged to a PD V,
and then the capacitor is connected to the
current meter through which it discharges its
charge Q. This cycle is repeated f times per
Yecond 5o that fhe charge per sccond (the
current 1) through the meter is fQ or fCV..

223

Example 2

A capsio of capiane C, & comecid 100 2Y
Sopply and i cischarged through a eharge mete
i ot 1 o “onered” A scoond

190

cpacior of capciance G, mm\mw el

The first charge measured 0 i 10 units compared with
15 units for the second charge Q. the actual size of the.
unit being unimportant.

CVand 0= (C; +

v
Q. oV _
2 Yo aie

—2420
G-
-2
Answer
Example 3

A capacitor repeatedly charged to 15V and discharged
iorougha millmmees by o a e swich working

i e e s e dag
S5ma. Cleit the capocianes of e apaco

Method

36 400

e xw0
B

Answer

204,

Formula for the
capacitance of a parallel-
plate capacitor

‘When the two conductors of a capacitor are plmllcl
as in a ‘paralcl-plate” capacitor or a waxed-pay
Capacon the capacitance € v by the ormuls

e
=3 @24
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For C; and C; in parallel
=6+ s

(secase ¢

Qi+
v

For C; and C; in series
Lo
<

Example 5

A 204F capacitor is charged to 12V. The voltage
Sappy s esoved and ten s 404 capcor s e
in parallel with the 204 one. Calculate the char
ke in the 20,F capacor (ol () naly

: j e

Fig.22.4 Dagrams for Example’s

() 0 Fig. 240 @ i given by
Q=Cv=20x10° 512
“axme
In'ig 2ot btry s bt emorsdand ve
hase 10 on the et and - on the

(b) In Fig. 224c the 404F has been connected in
paralll, The total capacitance is, from Equation

c=ci+

0440 =60,F

192

Now ye s el tht e carg onthe e
605F combined captcl
and —Q on the right,ic. z-t/c “The charge on
e et Fig. 223 s now shared by and Co
ot camnor scape fom the e or e aded .
Thus the PD Y across the combined capacitor is

the PD across €, and across C; in
Fig, 224,50 that the new charge on C; is given by

Charge = €, x PD.
620510 X 400r 80 % 10°5C.

(The B04C on the 20,F, and similarly the uwc
on the 404F illustrae that, in o parallel
cnabiation, e chargs 5 Siared o propovtion
0 the capacitances.)

Answer

(3) 241C, (B) 8.04C.

Example 6

(3) Caleulate the charge stored in a 3.04F capacitor
and a 6.04F capacitor joined in serics and then
connected across the terminals of an 18V battery.

(b) What i the PD across cach of these capacitors?

Method

(8) A diagram should be sketched (sce Fig. 223b).
“The combined capacitance C is given by Equation
26

So that

204F.
Therefore the charge stored Q is
o-cv-
=36x10°C

0104 18

and, for capacitors in series, this s the same for
both capacitors.
(b) The PD acrossthe 3.0 4F s given by charge divi
by capacitance and equals 36 x 10730 x i
<107

by capacitors in scries in
inverse proportin o the capacitances.)

Answer
(@) 364C. (b) 120V and 6OV,
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Example 7

(oYM 503¢/ ctpacioe ] cirgd ] 0V e
removed from the voltage supply. How much
ey s vt
6 114 S0,F cxpcors ot npanle with
what i the
o e capaior combinstion, and. bow ch
ey wasconverted o e by the mverentof
charge through the wires between the two
capacitors?

Method
(@) From Equation 22.2

v

XS0 10 x 407 = 80 % 101,

(6) he new capucitance (C = C, + C3) s S0+ 30,48
o 804F. We do not know the new PD, but we
ot he chre s the ame 3 in (0. This
charge is given by = CiV. so that it equals
0510 X 50C or 2.

“The enesy now in the 8, isgiven by £0%/C os

< @oxi0g?

o

e i prcnil eneey s e
15,0 has become heat in the

W10t sor sl

comectng wies.
Answer
(@ 404, (6) 25,15,

Time constant

When a charged capacitor C is connected into a
circuit of resistance R, as in Fig. 225, the current
VIR, or since C=QIV, I=QICR. This
means that the rate of reduction of the ch.srg: is
proportional to the charge Q.
discharge is exponential and Q
Chapter 2). Using 0 = CV' 1
becom e,

Hence
Que (m
last equation

3
Crargng uren 1
Fig.226  Timo taken for charging a capaciior

IonaipOkY,

Fig.225 Discharge of capacor (V = Vo ")

‘The ‘time constant’ for the discharge is the time
for Q or ¥ t0 fall o e of the initial value and is
given by

‘Time constant = RC @
‘The time required for  or V to fall to half the

initial value is the *half-life’ time and is given by

oy
or ~RC=In(112)
or —t=-RCxIn2
or 1=0693RC

Halfife of capacitor.

discharge =RC X In2 2
The time constant and half-fife values are not

affected by the initial Q or ¥ value and so apply

starting at any stage of the discharge. The time
nstant RC also afects the time taken for a

capacitor to charge. This is seen in Fig. 22.6.
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Example 8

Fig. 227 Circuit diagram for Example 8

ln(h(cnm tia g 227 e resisnce R 10D Cisa
000 4F and the resistances of the
st s e negligble

Caleulate the  milliammeter _reading expected
(a) immediately after the switch S, is closed, (b) 105
later, () after several minutes.

aler s e th i i pend nd the

511 o nsead.wha e expcied mllammetec

reading (4) .mmm.m:y e ST el 6 1

ater, (1) after several minutes?

Method

(a) A the first instant of charging, the PD across C is
zero, so that the current [ is decided only by the
supply PD and, of course, the cireuit resistance K.

10 10%) x (1000 x 10°%)
105

he time clpsed s exaty cqul o the time
s o that thecapacior PDY i3 Vo~ Vol
10 102718, which equals 5 a3y,
Cons 3711010,
which is 037mA.

10-63)R

(€) After several minutes, i¢. many times RC, 1 will be
effectively zero because battery EMF and
capacitor PD will then be equal and opposic.

2 During te i it ofditarge the cxpcon
s 10V, and this causes the current to be
u/R, € 10110 % 10') or 10 A.

© i

Answer

@ Loma, () 037mA, 9 e, @) L0mA.
(© 037mA. ()

Exercise 22.2

—

20

Fig.228 cremn, unmmlwmmumv

srcuit shown in Fig. 225, 10, and 20 4F

are connected in series with & 30V DC

supply. What s the charge on cach capacitor?

BO20MC € L0KC

E454C

2 A 204F capacitor is charged by comnecting it
Sros he emminas of sl whose EMF 15

() What i the charge Q stored in this capacitor,
the energy £ stored in it and the PD ¥ across it?
(b) I the cell remains connected, and a second
204F capacitor is connected in parallel with
the ot ot et ar 0, 5 and o the
second capacitor
@ The el s removed wibout discharing e
capacitors, 3nd 4 third 204F capacito
e i porall]wih the bt What re
Q.E and V' for this third capacitor?
3 Acapacitor A of capacitunce 404F s charged to.8
potential difference of 20V.

energy initially stored in A, (b) the potential

difference across A after B has been connected,
(¢) the energy finally stored in A and B?

4 A simple paralieb-plate capacitor with a 2mm-
thick ir - diclectric has a capacitance of
5 10°F. A niform sheet of material whose

dielectric constant is 2 and thickness is 1mm is

o st betwoen the plies hroughont e

capacitor area, the plates remaining

(me “Treat as two capacitorsin series )

fllen o Ve, ie. t0 102718 0r 37V, which gives a
discharge current of 37/(10 x 10°), <. 037mA.
0 Tor 1 Ch. he dscarge curnt s clcivey
2670 because the capacitor PD i then

15mC. 1t
v hen dmm'gnd hrough 2000 resistor. What
s the maximum current during the discharge?
A25A B0 C25mA
D22x102A E25x107A
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© A 10AF capcor nialy chaged 10 20V &
ischargs igh 2 SO0K resistance. Calculate

et o e cgacior PD (a)a e i

instant o discharge, (b) afer | second. 5)

Exercise 22.3:
Examination questions

(Where necessary use 7 = 885 % 10 Fa )
1 () A pasallel plate air capacitor is made of two.
Bortonal et pates exch having 1 area
010" m* and separated by a distance
o LS. The potential diffcrence between
he pate s S0V

Caleulate

(i) the capacitance of the capacitor,
(i) the charge on a plate,
(i) the energy stored in the nmmm

can he ligt say o fr  shor ime e the
josed. The circuit shown below controls
the ..mmg delay.

oo, coma
v o
o
Togning cecuit

The circuit has a capacitor C which i connecied to
e car batery when the door is operied. Wher the
door s closed. the capacitor s disconnected from
the batery, and connected scross a resistor R

O the axes below,sketch a graph to show how the
voltage across the capacitor varies with time.

(&) The plsis e now disconneced fom Vorage cros

o Sty e, e ot Pty

Churges remaining on them. The upper plte
s then raised until the separation of the
plates is 6.0mm
) Caleulat the increase in enerey stored in

the capacitor.
i) Explain how 0
WIEC 2000] Do, D T

Fig.229 Diagram for Question 2
Fig. 29 shows the circuit for measuring a
capacitance using a reed switch.

Gl e capctans ot produces a S0A
current when e i 80V and the

IS

Calculate the time constant of the circuit if
€= 220, and R = 100k

I oderforth lgh o be i, et st be
eapacito. Calulic how long
i sy o s th door s St

the h‘m
Explain the effect on the light if the manufacturer
increases the value of R, S H. 2000]

() (i) Define the capacitance of a capcior.
(i) Define the farad, the unit of capacitance.
(i) State one function of a capacitor

has
SV T masimun afe ot afcrence

o 2210w an smngencnt o s e
copacitor has

feed swilch frequency s 200H.
sing a different capacitor with the S0V supply and

oy o 100V s ey ofH0112)

Most new cars have an interior light which comes
on whenever one of the doors s opened. In some.

n 1
r I
1L I
I It

Fig.2210



MAGNETIC FORCES

Example 3

his rule considers current direction, which for the
movement of negative particles such as electrons
will I ity).

Example 4

An clcton s moving witha speed o 15 < 10 ms !
flux

Fig.23.4 Diagram for Example3
Fig. 23.4 shows two straight conductors AB and BC,
joined at B, carrying a current of 20 A and subjected
t0 4 uniform magnetic field of flux density 0017
whose direetion lies in the plane ABC at 60" to AB.
Both AB and BC e S0cm long The sgle ABC &
60", Calculate the forces on AB and BC. What
movement do the wo fores tofether 10 proce?
Method
The componentof & perpendilar (0 A (ramey
Beos30 or Bsin60)

= 001 % cos30 = 0.01 x 0866 = 0.0087 T
The force on ABs

F= 00087 %205 %10 = 0.00087N
“The force on BC i the same but, whie the force on AB
i pards ot of he disgram he kfhand e gvs
the foree
herefore produce & mupk o e ne B show
in the diagram, and rotation abou thi lne i expected.
Answer
87 10°* N, Rotation about BD.

Force on a charged
particle moving through
a ic field

Lemsiy ot 000127
(a) Caleulate the force on the clectron.
6) Gt el thechmlrput Khvedly
the electron. (Electron charge:
electron m: 0%10Tkg)
Note: A “uniform’ field is a constant field, ., it
for all parts of the
ed with
magnets, coils o solenoids (sce Chapter 25).
Method

) F = Bgv or Bev when e is used 10 denote the
electron's charge,
=0z L6 x 107 x 15 x 107
2810
(b) The force Bev is providing the necessary inwards
o R ot Skt o o Chapter 8).

Bev =5
Lo 107
Be " 00012 x 165 107
=70 107 mor 70cm
Answers
(@) 28x10°°N (b) 7.0em

Couple on a coil

ol oinsusiod
Copoerwie

“The formula for this is

s the charge carried by the particle, v is
ticle’s velocity and e magnetic flux
density perpendicular 1o v.
re asuming B 1o be perpendicular 10 v.
Otherwise B must be replaced in the formula by
s component perpeniclar v, e arly this
component is direction of F is of
Couree given by th le-hand rule (and note shat

e

g\hw
iy}
!

Fig.235 Coupleona coll
In Fig. 23.5 a force BIL acts on cach ver
1 there are  turns of wie on th <o he ot
force is BILn on each side of the coi
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‘The torque due 1o this pair of forces (couple) s

C = 2BILnR. However, the coil arca A equals
2RL, so that
C=BAln 35

Ifthe magnetic field is radial (sce Fig. 23.6a), then
B is always parallel 10 the plane of the coil even
when the coil is allowed to rotate, and C = BAln
still. I instead the field s uniform (see Fig. 23.6b
and ¢), then the component of B which is
effective is Beosd (see diagram), and the torque
€ = Baln cos .

€1 Untorm i with e s on yinder

Sotion

Fg.236 Radil and unform magnetic fields

In an ordinary moving-coil meter the current to
be measured flows through the coil, the field is
radial, and the torque BAln s the coil. The
tuming tightens a spring which therefore
produces an & torque of k newton metre
per unit angle of rotation.

‘The coil comes to rest when Brtln = k() where the
Eoelot i lat el el d:gk:s or
radians

BAIn = k0
The torque BAln s also used 1o produce rotation
in simple electric motors.

o

200

Example 5

A mavmg oml m:xcr rm a nul | with 40 turns, cach with
e in e v
i ng, e perpendininr o 5 i man
field o

(8) Caleulate the torgue on the coil when a current of
A flows through it.

© It ool s s of 000 o sty
0057 full scaledefecton, what_serics
ratamscl gl sl e liTe
10mV FSD meter
Method

(a) Torgu
107

n nwxsmm'xm;x
24x10°¢

(b) 10mV must produce 100, so the resistance of
meer plus seris resistance must be

1010

L 100 10

viny or 1000
and the series resistance = 100~ 5.0 = 950
Answer

(@24 %10 Nm, (b) 9512

The Earth’s magnetism

In the United Kingdom the direction of the

engacicf toeffaiusiyNsie o) el Eanis

magnetsm makes anangle 0 (caled the ‘anle of

dip’) of about 70

borkonal enmponent of i fux demuy i
component is

8,-8un0

Noth N

Eams sutace

Fig.237 The angleot dip



MAGNETIC FORCES

Example 6

e the size and directon of the force per metre
length on a straight, horizontal wire lying with 20A
flowing through it in direction north o south. (Earth's

horizontal field component = 1.6 x 10 T. Angle of
70

Method

By =Bytanf=16x 10" xtan70 = 4.4 x 10T

4% 107 x20 %1 =88 x 10N

F=ByL
By the left-hand rule, with By downwards, F s east-
wards.

Answer
884N, castwards.

Exercise 23.1

(Where necessary take jig o be 47 x 107 Hm "

1 Twovery long parallel wires 0.4 m apart in ai each
carry a current of SOA. What s the force, in
newtons, on each metre length of wire?

2 A horizontal wire of length $0em is moving
vertcally downwards, with @ current of LOA
flowing through it If the planc in which the wire
moves i perpendicular to-a magnetic flux density
of 0.1, calculate the force on the wire due 1o t
current,

A moving coil meter has  S0-turn coil measuring
Lo by 20cm. 11 s bekd In  radal magnec
fldof fl ey 0.15T and s uspension bas

of 30%10°Nmrad"'
Wi o o v to ghe 8 scheaton of
05rad?

In Fig 238 1 G, recunguar ol s fted

-

e of 10
wie and s dimensions are 38 own i the

T rent of 20w round the ol
o) What s f e venin fore ou sde BC
50 by incracion beween the current
and the Earihs magnetic fd? (Take the
horizontal component of this field to be
16x10°T)
(b) Calculate the total moment about the ale duc
10this force and to the similar force on side DA.
(6) Calculate the total moment that would be
experienced by the coil if it plane were at an
angle of 20 to the horizontal.

poconts
4

Fig. 238 Diagram for Question &

An clcton moving at 2 stady_speed_of
030 10" ms  pases berween o T, e
meul plates 20¢m apart

e them. The clron et rmching i
swaight line_perpendicular 1o the clctric field
between the plates by applying a magnetic field
perpendicular 10 the clectron’s path and 1o the
clctric fied

Caleulate:

(8) the intensity of the electric field

(b) the magnetic flux density necded.

(Hint: the electron charge is not needed. It
1)

Exercise 23.2:
Examination questions

1 Two Inng, snlgh, el vis i + i re
025m
 Tok wies cach cary  curat of 2404 in
the same diccon. Cauls the. fore
between the wires gth.
3 seih thoving clurly e direcion
ofthe fore on ad
(6 The curen i oaeofthe wirs i reced 10
S i i
second wire to maintain the same for
etween th wires per metee o i lengih
as in i),

(Take g

w107 Hm' )
(CCEA 2000, part]
2 (@) In Fig 239, PORS is a rectangular coil
consstng of N tums of wic and caming
1. The plane of PORS is parallel to
= witorm , Taptic il of fux censiy B
‘The length of PQ is L and the length of

R is b

201
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Fig.239

(b) The electric mo

w

in a vacuum, the lowe

(i) Write down an expresion for the force
aperined by e e FO o e o
(i) Shanw that the torque 7 experienced by
i ghen by

the  expression
7= NBLA where A = Lb.

or in & model railway engine

s powered by & 60V battery. Within this

motor, 3 coil of resistance 1.2 rotates in

field of a permanent magnet. With the engine.

g @ moderate load, a back el of

5.6V is induced in the ol

(i) Calculate the current in the co

@ Sugget a4 plin an. aadesile
consequence of allowing the engine 1o
pull 2 by losd for 3 kg perod of

{OCR 2001]

o parallelmtal et a1 tepared by 25 man
¢ being cart

Pl o wmmuy

§-osmr
Fig.23.10

between the plates, as shown in Fig. 23,10, There
is 2 uniform magnetic fild of flux density
0.020T, which is perpendicular to the beam and
parall to the pae, atng n the diecton

potential difference of 3500V is
.,;,um 10 the plates the clectron beam i
unds

(a) Caleulate the speed of an clectron, assuming.
that the clectric field between the plates is
uniform.

&) When the magactic fidd s remoed

o v detes dowreas
vt im). What is the
potential of the upper plate?  [WIEC 2000]

The ampere s defined as that current which,
flowing in two. infinitely long, paralle straight
wites LOm apart in vacuus

<0

. causes a force per

magnetic permeability of a vacuum,
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Electromagnetic induction

Straight conductors

Induced EMF in a straight wire
Considerastaght v of engh . moviog witha
magnetic

Bly i)
“This i the induced EMF. If the ends of the wi

where 7 is the resistance of the straight wire itself
(Fig. 24.1b) then the current / resulting from the

‘hich b perpendiulr 10
21a)

Fig.24.1  Eloctromagneticinducton ina staight wiro

The mera wie contans e clecirons, 50 that

ent of the wire means movement of these
Clrons at & velocity . Wo can e the formula
F = Bev (Chapter 23) and deduce that each frec
electron is moved by this force along the wire
until a PD is established between the two ends of
the wire sufficient t0 stop any further movement
of the electrons. This PD is produced almost
instantly and is given by

is

BL

Ik
and the terminal potential difference between the
wire's ends s

v _BLR

R+r

‘The direction in which the induced current flows
(Fig. 24.1b) can be deduced by use of Lenz’s law
together with the lefi-hand rule (Chapter 23) or,
alternatively, the right-hand rule may be used
with the frst finger for the B direction, thumb for
movement direction and the second finger for
the induced current.
Magnetic flux @
an rea s perpendica 0. mog
density B then the product B is ed the
magnetic flux and s usually denoted by the
symbol @ . The dircction of the flux s the same
i the dircction of the magnetic ficld.

and 1 tes

weber

The unit for s the web
per metre’.

D=nt 242

Induced EMF in a straight wire in
terms of magnetic flux

Inthe formula £ — BLv the product Ly s the area

area per second. Therefore £ = flux cut per
second by the moving wire. Thus £ =/t where

203
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E s constant. If E is not constant then its value at
any instant is d/dr. For calculus see page 12:

a
B= @43

B not perpendicular to the area

I the direction of B is inclined (o the area at an

angle n ctive of B is

perpendicular to B. Either way E = BLvsin0.)

Example 1

An acroplane is tra

which i horizontal and northwards. Calculte.the

EMF induced between the tps of it wings, which have

 span of 20m, Take the Earth's magnetic lu density
T and the angle of dip 71 at the place

g soanL - 20m

ey - 100m s

soxrer

X!

me Fig. 242 the component of the flux (lznslly
rpendicular (0 the acroplane wing's
%10 con 19 Using th formula £

E = (5.0 %107 cos19) x 20 x 100
107! % 0946 = 00936 V

=107 x cos
or95mV to two significant figures.
Answer

95V,
Fig.24.2  Suitable diagram for Example 1
Example 2

A et withmetal spokess inghough sty
revolut radivs of SOcm.
planc is pe..-mawm ot s coaonen:of
the Earth's magnetic field which s 1.6 x 10°°T.

204

Hence caleulate the induced EMF in a spoke.

‘Show that this EMF can be calculated from the formula
E = BLyif v is the mean speed of rotation of the spoke.
(halfthe speed of s outer end).

Method
(@) The wheel has anarca of & and the flu through
the wheel i s area  perpendiculr ludensity
= 2R % 1.6 % 107 weber
o 3M2X0S x L6% 107 Wh
the flux = 1.26 x 10~ Wb
(5) The spoke cuts through this flx twice per sccond
Sothat 1 revoltion tskes 0505 and

EMFE(=22

25210 volt or 25 x 107V,

90 _d0)_Bxa_p o

© E= a 0%

but mean speed v of spoke.
time for a revolution

x circumference/

=3%9s0 ~ R
and spoke length L ~ R 5o that

Answer
(@13 10 Wh, () 25,V

Exercise 24.1

1 Caleulate the induced EMF in a straight wire

when it is moving at .0ms ' perpendicular (0 ts
length in a magnetic field of flux density 0.10T if
icular 1o the

ane of movement, (b) parale o i, (¢ at 60 to
it The wire length i 1.0cm.

(3) Calelate the EMF induced between the axle
and the rim of a spoked metal wheel if the
‘wheel adius s 20cm and the uniform field in
which it lics s 0.0207 perpendicula o the
plane of e whech the speed of oo

ing 10 revolutions per second.

(b) What is the expected current size through a

esistor connected between the axle

and the rim if the wheels resistance is
negligible?



INpucTION

3 oot Nt thghl 0 osby asmigh
wire 30cm long moving at 20ms ' perpendicular
o s eogth and 10 sgnetic el o o dendy
10mT.

Coils

Induced EMF in a coil
If 4 fat coil lies with its plane. of area A.
perpendialar bo o magneti eld whove s

density is B, flux © ‘passing through’*
the coilis B % A
Flux =11 x4 244

@ can be changed ~ c.g. by changing B or by
rotating the coil so that less flux passes through
. Now the change of this flux & through the coil
s also the flux cut through by the wires of the
coil. So we can use the formula (Equation 24.3)
obtained earlier for the induced EMF, namely
E = deid

lowever, for the coil it is appropriate 1o
describe d@/dr as the rate of change of flux
through the coil.

For a coil of n tuns the induced EMF is n times.
greater.

aa e
'y 245
Where s the flux through the coil
Aliernatively we write
246

even though the coil has # twrns and & now
represents the effective flux’ through the coil,
called the M c. this quanity being the
product of lux through coil » number of turns.

Flux linkage = n x Flux
The ST unit for flux linkage is also the weber
(Wh).

g et e f of mcking e e o
alon he e of e of s e

ote that, since both flux and flux linkage are
usually denoted by the same symbol  and have
the same unit, it will som
distinguish between them, c.g. by writing flux &
or s nkage 9

Frequently Equation 24,6 is written as

S0 that, using a suitable sign convention for d4/dk,
the polarity of £ is obtained. You are not
expected to know this conve

For a coil of 1 turns and arca A, perpendicular o
a uniform flux density B the flux & is BA (see
above) so the flux linkage is

@=gan 217

A typical example of induced EMF in such a coil
is the steady reduction to zero in time ¢ of the
fux density B. The flux linkage change is
Bin — 050 that E = BAn/.

Example 3
“The flux passing through  coi of 80 turms i redced
quk ot sy o 20V o U5k 5

{imeof 405 Caklae the induced EME
Method

s

£ = & where s the s ik
dnd) 002

RN

E=30x10°V
Answer
0.
Self-induction

I the current / in a coil changes,then the magnetic flux

density B within the coil changes (as the field
e ool of coune) nd b coves
induction in the coil. The coil s an
or st o EVIE
E=p i 248

k

where L s called the slfinductance of th coil. The S1
unit for selfinductance is the henry (H). L is decided
by the col'sgomery s waher of s and oty
the presence of magnetic material (permeability )

vt or arond te o0 Hence theunifor ST

205
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Back EMF

selfinduced EMF s often called a “back
ME becuise . opposes the wolage. thal
produced the curtent

Similarly a rotating coilin a motor experiences an
induced EMF due to its movement between the
poles of its magnet and this volage (back EMF)
opposes the voltage driving the motor.

At the instant when a circuit is connected to
voltage supply the current (7) i zero and the rate
of growth of current (dlidr) will be such that the
back EMF  equals the voltage.
Subscquently the induced EMF and the PD
(¥ = IR) across resi the circuit together
equal the supply PD. Finally IR = supply PD as |
becomes steady.

Mutual induction

When two coils are close so that a change of
current /, in one of the coils causes a change in
the flux density inside the second coil, an EM
induced in the second coil.

“This fact explains how a transformer works (see
page 218)

Example 4

120V DC volage supply s conneeted o aninductor
of 0.50H inductance and 10082 resisance what is the
e o is of current

(@) a the instant when the conncction is made
r0)

(b) when the current has risen 10 0910A

(€) when the curreat is 0.00 A7

Method

(@) E-ry

and cquals the supply voltage.

20=05x 4 ang & s
20=05x & ana & =504

(b) When 1 = 0.010A, the PD due to the resistance is
V= IR and equals 0.010 % 100 or 1OV. But the
PD across the inductance and resistance (think of
these as in series) must equal the supply PD, so
the further 10V s the induced voltsge due 10 the

dr
7

206

1o=0sx 4

4 _a0as

4 20as
© I=00mA

V= IR = 0.020 x 100 = 20V.
“This means that the voltage due to sef inductance
a

9L is o and the current i no longer
rising.

Answer

@4DAS", 1) 20As", (0 Zero.

Exercise 24.2

1 A Mt coil having an area of 8 0cm’ and 50 twms

050second,what () the il thoigh e
ol )t i s lnkag, (9 the iduced

Calealate the self-inductance of o coilthat
experiences an induced EMF of 20mV when the

current through it changes at a rate of 20 A5 .

Rotating coils

Induced EMF in a rotating coil in a
uniform field

‘When a coilrotates as n Fig. 24.3 the formula for
the induced EMF can he o ipplying the
equation E = BLY 10 each of the vertical sides of
the coil (see Fig. 24.3). The formula is

E

/B sin 21 or 2/ B sin s ¢
249)

do

Otherwise the formula £ can be used. In

@
15 formula & 18 the (i fiskage ond oquae

0 where @ is the angle between the coil
and B, Als 0 cquas o where 1 the time
h started when 0 was zero.

wh

Now if you look at the simple harmonic motion
formule. fordiplacement_(s = rsinot or

) velocity (v = rwcoser)  you
niude tha he e o change of sinor with 1




moucrion

) Cot reatng naunorm sl

Fig.24.3 _Induced EMF ina rotating coll (a simplo.
generator)

equals o cos ox. Similarly comparison of the SHM
fomwiae_ or vn.lucny O=pucsa) md

(a =o'y o) shows
oo et o Change of cosx with time cquale
—osinor.

disin wi)
AR = wcos
@4.10)

and ~wsinwr

dicos wi)
@

SoE=—

4 dBAncosor)
@ ar

= ~BAn( - wsiner) = 2fBAnsin o

imhicf i the number o evlution ersecond
. the frequency of rotation), A i the
o o of rnsof i o 0 Coll and 1.
the time, The magnetc ux densly s sumed
to be uniform (the rywhere) and
perpendiclar 1 he s of rotation.

As 1 increases, sin2sfi will reach a maximum
value of unity (= 1). so that the maximum, or
peak, value of E is 2afBAn and we can write
Epsinox where Ey is the peak value and o

s the angular frequency (2+7) of the EMF or
the _angular velocity of the rotating coil (Fig.
24.3b). In these equations ¢ is zero when the
plane of the coil is perpendicular to B, and ot
the angle between the coil axis (not rotation
axis) and B. The graph shape is sinusoidal.

Example 5

A coil of 200 wms and 12em’ area is rotating at 20

evolutionspet second in a uiform magnetic feld of

flux density 00207, Calulae th induced EX

the coi's plane is momentarly () parail to , (i) at

0 08,

Method

) Theinducsd EMFisE =
249

25fBAn sin 2ef (Equation

We have

S =205",B = 000T,A = 1210
andsin2rf = | when he cofspane ol o

E

20 % 0.020 % 12 107 x 200 x 1
0603V or 0,60V

i) m c e 2 css o when he col'spane
through 1

s pmmnn ncacs ths the e 2 = o
1or),
E=20x20 X002 12 10 x 200 x sin 70
0603V x 094
—0s7v
Answer

(0.60V, (i) 057V.

Exercise 24.3

1A flat coil of area 4Sem’ having 200 wens of

current i the external circuit resistance is zero?

2 A ol is rotting in a uniform field of 001T
perpendicular 1o the axis of rotat
243). The coil area 5
tums is 50 and the steady speed of rotation is 20
revolutions  per L
maimum nduced EME, () the nduced EMF ot
the instant when the plane of the coil
10 the field direction.
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Exercise 24.4:
Examination questions
1 At the beginning of a horse

Sright wie of fengh 20m & 1 mg.n mm.u,
through a height of 3.0m in 0.2

“The horizontal oot ol he Eais maaetc
field strength  per
10°T,

What s the average ¢.mf. induced across the ends

of the wire?

Ao BO2mV C12mV D 60mV
[OCR 2001]

oo

@ A, ciuls ol of e of 0 trn, cachof

T densy D30T, an shown. Coeuate
flux linking the coi,

(b) The coil is now rotated steadily at 60rads™
about a diameter which is perpendicular o
the magnetic field, At time f the coil i in the
position shown.

(0 Gl an expresonforthe kg the

coil
(i Henee show 1t h indoced . £ 1
time s giver
E = 2255in601.
WIEC 2000]

208

3 A flt cicular coil of 120 tums, cach of
070 placed with s s parale 1o i
magnetic field The flux density of the ficld is
changed sieadily from S0mT to 20mT over a

Whatisthe em.f. induced i thecoilduring thistime?
A0 B 130mV € 170mV D S0mv
[OCR 2000]
4 A metal framed window is 13m high and 0.7m
wide. It pivots about a vertical cdge and faces due.
south

Calclie the magoeic fu throgh the cosed
indow.

\Ikmzm\lul component of the Earth's magnetic
field = 20,T. Vertical component = S0,T)
“The window is opened through an angle of %0 in.a
time of 0.80s. Calculate the average e.m.f. induced.
and explin the cffect on the induced c.mf.
of converting the window 10 a slding mechanism
for opening. [Edexcel 2001]
S Fig 204 showsa s it conning 1 20V
cell, a switch S, a 0259 resistor R, ar
inductor L The el rsisance of th el and
the resistance of L are negligible.

200
s

o250

Fig. 244

(@) After clsing S the curent i the i rics,
wally becoming steady. While the current
is increasing from zero to 020, the rate of
change of :un:m can be assumed 1o be
constan st 40A<
¢ e for the instant when the current
2030 th potcldiference ()
1 across

2 across L.

(i) Use your resull from (a) () 2 in
calculating the inductance of L.

® The urten i he et sl ecomes

o Cak'ulals the magnitude of the steady

i) F_xplun why Ihc inductr L play gt

s
in determining the magnitude of this
Seady curent. [OCR 2000)
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Magnetic field caiculations

Field due to currentina
long straight wire

Neutral points in
magnetic fields

As shown in Chapter 23 (p. 198) the field
«ungm‘ called the magnetic flux density, is
gives

s

where i the curent through he sight wire
and B is the resulting flux density at a point
iuance d from the w1 equals permeability
ofhe medium. The incs of forc o (s ed are
ciles centrd upon the wire (o8 satcd i

Chapter 23), and this is shown in Fig. 23.2. The
dirctions of the lines o Toro are gven by the

‘corks nile according 10 which these
when one looks along

dinections are clockvi
e wire inthe diretion of the Eureat,

Fig. 251 Field around a ong straight wiro

Magrc mensiy s o diffes gy hor s o wsed 0
st

If & magnetic field results from more than one
current-carmying conductor or magnet then at a
certain place in the field the flux densities may be
‘magnitude and oppositein direction so that
., the resultant flux density is
zer0. Such a place is called a ‘neutral point’.
Example 1
A long, straight, vertical wire carries o downward
curent of 40A. The carts magnetc s n which
this wire is placed has 4 horizontal component of
16 10T, Caleuate:
0 the et oot mag
i 10¢m 1o the west of the

¢ flux density st

® he o o e o s il point.
(Take jeas 4 %107 Hm ™)
Method

(8) The flux deasity due to the wir
10em (0.10m) s given by

TN T 080 10 T or 24y,

6) At the el point the s desity due o the
nitude 10 the 1.6 x 10T of

e carth’ field

ul s
= 16x10

A0 1px 10

50107 m or S0em
Answer
() 44T, () S0em
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Magnetic field at a point
within a toroid or well
inside a solenoid

Fig.252  Fiold withinatoroid

‘Within a toroid (an endless coil, see Fig. 25.2) the
magnetic flux density is given by

=l  number of turns per metre

or B=pIx '
e B=uIx 252)
A solenoid s a long coil, ic. its length is

consderablygreate tan s diameter, 2 hows
in Fig. 5.3

Fig.25:3 A solenoid

A soleno
m mu.!

in be thought of as part of a large
el e iematiseqoff g
from the middle of the
Solenid 10 et the fox density there. Hence

e same formula (25.2) applies t0 a solen

Example 2
Calculate the flu densiy in the midde of a olenoid

which the permeabi
Method
The flux density i given by Equation 25.2:

i
AIL

210

S0 WL=10 per em. ic.

Answer
63%10°T

Exercise 25.1

may b taken as

(The _permeability of  air

4z 107 Ha')

1 A vertical wire carries a downward current of
50A, and 12cm east of this there is another

the first wire and 10.0cm from the other?

2 Two long. paralll,straight
e v e o 20 and s
carries 30A. In the resulting magnetic field there
i a neutral point. Caleulate its distance from the
20 wire

(a) when the currents are in the same dircction
(b) when the currents are in opposite directions.

3 A solenoid having 200 twms per metre and

Caleulate the Earths horzontal magnetic field
component B.

4 An air-cored toroid has 200 turs and a length of
15cm. Around its centre is wound a coil of radius
30cm with 20 turns. If the current in the toroid is
initially 20mA and is reduced steadily 10 zero in a
time of 0.10s, what EMF will be induced in the
bum oo drig hs tme, Take permesblly

of air o be 4

Exercise 25.2:
Examination questions

1T gt eyt i P o
2 long. siight wire camying

Sont A lie perpendiar
pasing rough P mctta i Qi
o rom he i o P What & the lx desity ot O
when the current in the wire i reduced (0 0517



MAGNETIC FELD CALCULATIONS

2 Adinty sringof 180 s i sreched wniformly
ng 4 horizontal bench-top. Wher of
1305 i pased through the pring, i acts 3 2
solenoid.
@ Calui the magetc fux desiy at the
conie of s olencid when the tendion in
e sprng s soch e length is 200m.

(&) The enion i thespring i e o
h becomes 1.50m. Find the new flux

dﬂle at the centre of the solenoi
1CCEA 2000)

o, Bt
Ui e cquutons P ait, B4 ana

£- Lgmmm,..m,,.mm.q..mw,
o ppcra o T by
self-inductance L.) L in BIL denotes lengt

4 @F uumm a re:

ew crossecion of
W of an

agnetic compase s hekd hoizomaly 3 P,
1.5m above the cable

Cartage—__

() Caleulate the flux density Be of the
magnctic fild at P duc to the current
the cbi.Take the sty f it t0

13 106

@ on 4 e an ot P o show
the direction of B
(b) The flux density By, of the horizontal
component o tbe Esrs magnete ed s
ST, Assume that this acts in the
Gieion of e Ny e no
other magnetic fields apart from that of the
curtent in the cable.

Caleulate the resultant horizontal magnetic
s deniy 2 1 P st the iction in
which the compass points, when the c:

s oriented with it front:

s the cast;

s the orth,

rriage

[OCR 2001)
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Alternating currents

Varlatlon of voltage with

Fig.26.1  Sinusoidalvaration of voltage and currnt

vith timo.

Fig. 26.1 shows a graph for an alternating voltage

or current that is sinusoidal. Mains AC supply is
this.

Unless otherwise stated “alternating current’ or

‘ternating volag” mesnssiusoidal et or
. As shown r 24 a uniform-ficld

pencrton prodece & Soukarilvallage

The variation of volage with time is described by
the formula

V=Vsin2af 26.1)

where f s the number of cycles (ic. repeats) per
second and s the frequency, # is the time
measured from an instant when

the maximum or peak value of the voltage. Note
that 27/ may be written as o, known as the
angular frequency. If the voltage is produced by a
rotating-coil generator, then e may be identified
with the angular frequency of the coil's rotation
and .= i, whee O the ange through wich
the coil otates. The unit for  is rad s

Lsinwi or ¥y sing 2621
However, regardless of the cause of the voltage,
the value of 0 is important for describing
the stage reached by the voltage variation and is
called the phase angle, as explained in Chapter 1.

iz. 26.2 shows how the variation of voltage
described by a rotating radius (see also Fig. 11.2,
describing simple harmonic motion). It is a
phasor because it has size and phase.

Size of current in a purely
resistive circuit
If the circuit concerned contains no significant

epaciance or inductance, only resitance R,
Thematall mes 1 = VR o

Mandof clocis 8 phasor
ot s pe Sacone

Fig. 262

Vo

Use of a phasor for vitage or curont (¥ = Vo sin ct)



ALTERNATING CURRENTS

Syt A o v oy

v

Fig.263 A purely resisive crcut

or 1=/, sin2ef 263
where I, = Vy/R.

The urvent s and flls fsepuith the o
e.Tand V' are in phase. [ = I, when V =

Average and RMS values

The effects produced by alterna

ing currents will

jown as the average (or mean) v
current or voltage. Heating I;y

a current i
decided by the mean value of 1°R or V4R, and
the square root of mean 1* or ¥ is the root

mean square (RMS) value. The sizes quoted for
alternating voltages and _currents,  unless
otherwise stated, are ahays RS values

For a sine wax n the mean value equals
(2 x peak value and the RMS value equls
(11V2) X pesk valoe.

_2
and 1=25 26

In Fig. 261 for cxample the pesk volage i 10V
and for the sine wave Vs = 7.1V, 7 = 63 V.

Example 1

A siousoidataternating volage displayed on  catode
Tay oscllocope isseen (0 have a peak value of 75V.
What reading should be obtained ith 3 volimeter
indicating RMS voliage?

Method

V, = TSV but Vs = V2.

Theretore Vays = 7511414 = 53V,

Answer

v,

Example 2

Calt th valu of skl vls having 3

o Ui st if the ol rsistncs of the

Gioutis 00

Method

V= V,sin (Equation 26.2).

One-tenth of a cycle is 36010 degrees, ic. 36

Therstrs ve e ¥ when 0136 st 30
126°. However, we should realise that V wil

have the same value 1 36 Jes than 90" namely

=54

V=30 sinS4 0r 30 x sin 126

Heace ¥ =30x081 - 243V
. v omui_,
Corent < ¥ 23 274

Answer

2,274

Impedance

s the opposition of a circuit 1o the flow of
alternating current. Tt is denoted by Z and is
defined by

[
T

265

where Viys is the RMS supply voltage and Tavs
the resulting current. Clearly we could use peak
values or mean valus in place of RMS in the
sbove cqunion. Z is decided ot only by the
resistance R of but, as we shall soon
15e, by the presence of inductane o capaciance
in the circuit also. Tn @ purely resistive circuit Z
equals R because Vs Tuass = R

Inductive reactance

Suppose that an alternating voltage is applied 10.a
copper coil of appreciable inductance L

Chapter 24) but negligible resistance ie. an
“inductor” (Fig. 264). The continual changes of
current 1 cause induced voltages that oppose
every rise and fall of current, Consequently there.

213
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—v—

G L Gessarcan=0)
Fig.264 A purely inductive circut
s opposition to the flow of the alternating
ypposition due to_ inductance. is
called inductive reactance

v,
Itis defined as the ratio Por VRN
5 Vaws

course, measured in ohims. Its magnitude is given
by

and s, of

Y=ol @66
where @ is the angular frequency (=27f) of the
alternating current.

Capacitive reactance

When an alierating voltage is applied to a
capacitor C, it repeatedly charges, discharges
and recharges the capacitor with opposite
polarity for each successive charging. Thus
alternating current is flowing in the circuit (sce
Fig. 26.5).

~

——
7 <
Fig. 265 AC circuit containing capacitance but
negligible inductance orresistance
The extent of each charging of the capacitor, and
T e
ke i et
The current grester If C s large i the
process is rapid (ic. the frequency is high)
‘The opposition to ahtmaung current flow due to
the presence of capacitance s called ‘capacitive

reactance’ (Xc) dcﬁnc;l as Yep o Venss
Tas

Tts size is given by

267)

0 we see that the impedance Z is equal to R or
oL or 1oC if the circuit contains only
resistance, only inductance or only capacitance
respectively.

Example 3

A sl st o of 60V RS nd
frequency 10z + ol of 0SH
inducne and eghie reisanc. Wt i he
expected value for the RMS current?

Method

Yo _ 7= Xl =2efL

PV S Y T
T~ T I 05
=00019=19%10"A
Answer
19ma.

Example a
ek, SOt sl vl i it
Copchon It pek coen B 155 s v e
valu ofthe capacitance?
Method
Vo _ Ve
T " Taas

SN
Xe=ueTme
2 1
7107 - FxS0%C

15710
REpEer

20 10°F or 20,4F
Answer

204F.

Series LCR circuits

Fig.266 The series LCR circuit



ALTERNATING CURRENTS.

a0 A clock wen v hancs e Vs Vg and Ve,

7

—

A /X "

\/\\I/\/\ %

KA
\

Fig. 26,7 Use of rotating phasors with an LCR circuit (see Fig. 26.6)

An AC circuit may contain a combination of
resistances, inductances and_capacitances. We
will deal only with the case of these all being in
series as shown in Fig. 26.6. Unfortunately the
e o[ resiince &, inducte reatane ol
ce 1/exC cannot simply be
Sodea o anishe mpedance 2 of the e

In fact Z is less than what would result from
simple addition of these ohms because the
voltages V; and Ve are not in phase. V; reaches
its peak value (V;,) a quarter of a cycle before
the current peaks and Ve peaks a quarter cycle
after the current peaks.

Vi peaks when the current peaks, as you expect.
These facts can be illustrated using the rotating
phasor method, as in Fig. 26.7a.

In Fig. 26.7 V, is shown greater than Vi, and Ve,
issmillst ASa resul thetota volage Vieads V,,

phsors Vi Vipand Vo n Fig 207 sgree with

his requirement and their resultant, obtained by
npplymg the parallelogram rule (see Chapter 2)
sV, given by

v,

o = Vi + (Vip = V)

It follows that, since , s the same throughout,
that

(268)

:
z'=k’+(m_—”ic)

Also we can see from the triangle containing « in
Fig. 26.7b that

the capacitive reactance playad alarger part in e
et xwould e negativ, i. the current would
reach its peak before the total voltage (or supply.
voltage). 2 should be remembered as the lag of
current behind the supply PD.

Atany instant the PDs Vy, V; and V- must simply
add algebraically. It can be shown that the

or, dividing top the fraction by /.

wL-de

tna=—p— 269)

where i the anle by which the current lags on
the supply
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—
P
-
tang < il -
Fig.268 Combining A, wl and 1/wC in series

The facts described by Equations 268 and 269
are summarised in Fig. 26,8

Itis useful to note that

L

wC  lews

7= Vs
Tews

@6.10)

Example 5
Calculae the curent especed when 4 030H coil
having 35 resistance is conneced o 0 2V RMS,
70Hz voltage supply

Method
o€ =

e bcase, wher » capacormig
been, low resistance connecting wire instead.
Equation itk

and Z = Viws/luws, where Vs and Ty are the
voltage supply and current

Alow =21
L=03 w=2f=2ex70, R
7 =55 4+ @xxx 0 x03)
1430

Trus (=Vis/Z) = 22/143 = 0154 ARMS

Answer

o1sARNS,

Example 6

A J6gF pcior a0 v ol o 00
Teitine a, comneted i sere acros & 20V, SOHz
AC supply. The current obtained is 40 mA RMS What
it nducangeof e il

Method
(ot-5)

7
Z2f an Vaws
o=2 md z=yRe

Viors =20, Tosis =40 107, £ =50, R =300,
c=l6x

2

Zo g B a500, =20 5023142
B N w Y
2o =00+ (ns2n - 5 0
(1421 - 199" = S0~ 300 = 160000
S1622 19400 and L= 19m
Answer
191
Example 7

Calculate e time interval by which the current lags on
the 50Hz supply voltage for a circuit in which a 10H,
10000 il anly s connectd 0 the spply. This suply
has negligible internal resistance and reactanc

Method

tana = 2L 2V0C (Equaiion 269)

ando =24, f = MIL 10, R = 1000, 1oC = 0.
xS0y

23
But 360" is a whole cyle,ic. one-ffteth of a sccond.

Therefore the lagis
L, 723 -
4 B 00y

Answer
40x 107

Heating by an alternating
current

In a resistance R the heat produced per second

internal " energy
resistance) s the mean value of I'R, i iR
In a pure inductance or capacitance there is no
production of heat. So the power dissipated in an
LCR circuit is

I3

or Viis Tws cosar

bR o Ty Zoosa

@611)

(R = Zcos,as shown in Fig. 268



ALTERNATING CURRENTS

The product Vislaus s often called the
‘apparent power’ and cosz,

{actor, 1l he £t of e 1o appATEN: power
Weosz = L i P = Vs ra thehe st or
device (across wh ws) S acting as a
pure resistance (a e LCR st e esrnee
for example (see this page)).

Example 8

Calculate the true power and the apparent power in
Example .

Method

The true power is Ly R. Using fuxs =40 x 10 A
and R = 30052 we get (10  10°')? x 300 which equals
08W.

The apparent poweris Vs  fus. Using Vs = 20V
and Jus =40 % 10 A we get 20 x 40 % 10, which
cquals 050 W.

Answer

048 W, 050W.

Exercise 26.1

1 A sinusoidal aliernating voltage supply h
RMS value of 20V.

Caleulate (3) the_peak
ak current if the

e shortest akes for a 100Hz
o8 it g o o@is
peak value, (b) half of it peak value
A sinusoidal voltage supply_ having an sngular
requency o of 200rads " and a peak voltage of
100V s connste toan inducso of 050H sad
negligible ce. Caleulte (1) the inductive
Teactance o the mducto, (b) he peak curem,
(€) the PD at a time of onc-sixth of a cyce afier
the PD was zero, (d) the current at this time.
A coil having inductance 0.040H and resstance X
s connect 250 resistor and a
sinusoidal voltage supply with _frequency of
S0Hz. I the RMS PD across the coil cquals that
ross the resstor, calculate (a) the impedance of
the coil, (b) the value of X.
A 60V RMS alierating voltage supply with a

capacitor in series. Calculate (x) the impedance
of the circuit, (b) the peak PD across the resistor.
A 25W, 100V heater is 1o be run from a 250V
S0Hz sinusoidal AC supply. Caculate the
inductance to be included in the circuit.

Resonance in an LCR
series circuit

Inthe formula 2 = R* + (L — 1/aC)’ it can be
seenthat Z = Rif oL = Ve, but under al other
circumstances Z is greater. Thus for a given PD
oplied to an LCR sris et the curent &

exceptionally ol = oC. This
condiion usualy ariscs s a result ofthe supply’s
fequency being v unil o'~ 1 or
o= 1WVLC)
=Lt @6.12)
/L)

“This phenomenon is called resonance. It is the
result of the applied frequency matching the

i — 1
it own (or matura) frequency of 57

)
The high current occurs because ¥, becomes
cqual to ¥, so that the would-be opposition to

current flow due to L is cancelled by that due 10 C.

I

Fig.26.9_Curentin an LCA seres circut, showing

At resonance

i 2 is zero and /
PD V. Resonance.

se with the supply
. 269.

Example 9

(3) Calculate the resonant frequency for a series LCR.
circuit_in which L =00I0H, C=104F and
R=200.

(b) If the voltage supply is 12VRMS, what current
flows at resonar

() What is the RMS PD actoss L and across C at

217
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Atomic and nuclear physics

27

Photoelectric emission and
atomic structure

Photoelectric emission
from the surface of a solid

Elecuomagnetc o s made up o sparac
(d antities of energy which we may
deserbe a8 ght  partices. (photons). Each
photon consists of encrgy Af joules, where fis the
uency of the light and i is the Planck
constant (or e/ because | = velocity of light/
wavelength = c/4). For an electron 1o escaj
from a solid by pnomlmm emission it must
acquire the cnergy of an incident photon and use
this energy 10 (1) ‘get 10 the solid’s surface’ and

with (3) some kinetic energy L. Thus

N Energy
= togetto | +WFE+ Jon?
orhe/N  \ urface
@
where ¢ s velociy of e g, 2 the waeelengly
m mass of rom, v velocity of the escaped
electron Ulhunxl:c!mn)

IAf < WFE then

n/(w ’7") = WFE + {my? @.2)
If an electrode is placed near the emitting surface
and is made negative by ¥ volts, then the photo-
clectrons can be repelled back to the surface.
Even the fastest electrons that aim directly at the
negative electrode will be prevented from
reaching it if the retarding PD V' cquals or
exceeds the value given by

o= Lo which cquals %€~ WFE
@13

where eV (the work 1o be done in reaching the
electrode) s the electron charge x PD.

Work functon enrgy can b quoted in joules or
electron-volts. This s the highest kinetic
Coctty thal an_ cstaping cleciron can have
KEq,). The work function voltage is the PD
needed 10 acelernte clectroas 0 such an

ergy.

The electron-volt (eV)

OF all the electrons cscaping the fastest will be
those which did not have 1o use energy 1o reach
the surface so that, for them,

Thisisa unit s
in_particle atomic and nuclear
caleulations). It energy acquired by an
clectron frecly accelerated (ic. in vacuum)
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through a PD of 1 volt. Therefore, since work
W

el = joulé

where e s the electronic charge (1.6 x 10
working in S1 units)

TeV = 16x 10770

@4

0" when

Example 1

Blecromgrei diion o requeney 038 x 10 s

falls upon a surface whose work function is
(@) Calcalate i energy of p»\m»
et releaed from the srfce

(b) Ifa neasby electrode is made negative with respect
10 the first surface using a PD ¥, what value is
reied or Vi1 1o e st sufcient 1o sop

the photoclectrons from reaching 1
e dctodes

(Planck constant s = 6.6 x 10 ™
electron charge ¢ = 1.6 x 10°°C)
Method

(4) Using Equation 27.1 0r 272

- wie (8

s )
fastestphotociectrons
we have
665107 088 10°
S L6% 10 | e
23 s il by 1 ¢ 1T b orer
)

convert the 2.

S0
=SB0 30107
— 1810

In electron-volts,

E = B0 1056V or

Tox107 Hev

(6) Working in joules again (our cquations are all
witen for SEunits) we have rom Equation 273
& =i
& e =180
SIS0 18 e o
Vet T e T B o LY
More simply, = 116V and  retarding
PD =11V,
Answer

(@) 11eV, (&) LIV.

22

De Broglie wavelength
for a particle of matter

Light and other clectromagnetic radiations must
be regarded as waves but also as partiles (quanta.
of cner), i photons. Each plokon ther s 2
mass m = E/c the energy of

photon and ¢ is e
Chapter 29). Using £

elocity of light (see o
he/ 7 for the photon:

he/h A
L or me =t

m=

Momentum me = & 275

De Broglic proposed that any particle of matter,
e an clectron o proton, has, like a photon,
both wave and particle properties, so that it has a
wavelength given by

a= @ R 276)
omentini v

mits mass.

where v is the particles velocity,
Note that the cletcon e’ elociy b ot equal
10 the velocity of light ¢ and so £ = € does not

apply.

Example 2

Gl he wivelegh of crons et
accelerated from rest through a PD 'hat
ind ot ccnomagnct +adion o wcengin
similar o this value?

(Electron mass m

9% 10

quation 27.6, wavelength = i/momentum.

To find the electron's momentum:

Momentum = me = /(ZmeV')

© ot "
= Momentum ~ V(omeV)

h=66x10% m=91x 107 e=16x10",

V=1,
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Exercise 27.2:
Examination questions

Where necessary use

electronic charge (e) = 160 x 10°C
tronic mass () = 9.1 x 107" kg
elocy of figh n vacuum (€)= 30 x 10'ms"

Planck constant (k) = 6.63 x 10*Js.
1 clectron-volt (eV) = 1.60 x 10

1 An clectron waelling at 80 10'ms”! in a
Vacuum eners a region of uniform magnetc field
of flux density 30mT, 35 shown n Fig. 27.1.

x x x x

x X x x
[ Magoadc fold
— ink paoer
x x x

x X x x
Fig.27.1
(i) On Fig. 27.1, mark the direction of the force:
on the electron when it enters the magnetic
field at
i) O:l:ulnl( the magnitude of the force on the

(i) F)vllm ‘why, when the electron is moving in
e s oo part of a

() Coette he i o i o path.

[CCEA 2000, part]

2 Uik lght ofyalengh 220 s shone on

etal surface. The work function of the metal
st

Calculate the maximum kinetic cnergy of the

enitted photoclecron:
it the maimum specd of these

Phockeons i 0 Wms.
Cilulate the de
Phoetectom it s et
Explain why these photoclectrons would_be
suitable for studying the crystal s(ru:lum o{ a
molecular compound. [Edexcel 2001]

3 The disgram (Fi. 27.2) shows some ofthe ey
Jevels for atomic hydrogen.

waelengih of

1d arrows 1o the diagram showi
transitions which could fonise the
Why s the level labelled ~136¢V called the
ground state?

ng o e sige

noe
Fig.272
ey the arsion which woukd rslt n the
emission of light of wavel c..,.r.

mewel 2000, part]
In a simple model of the hydrogen atom, an
electron of mass m, and charge —e is supposed to

o g (han hal of heclecton T e
speed of the electron in orbit
B Wric down an cpresion for the de:lnnl
force between the clmmn and the
rovide th cenmepeal
fore requied o make the cleciron mov in
it ori Heace oban an aprsion or
ferms of e and
(@ Lo tis ey coly cegaln valus 1,
... of the orbital radius are allowed. The
comsponding e fte ot peedsre
relation fixing the

s

wh

2.3, @110)

and s the Planc constant.

1. Use Equation 27.10 and your answer (o (i)
10 show that
= A,

heret s conar Qe 41 copreson

for A in terms of . e, h

Henee el te s ‘ot th smatct

electron orb

. Drw . Skech showing the proton, the
smallest electron orbit, and the next three
orbits

4. According tothe de Broglie theory, a moving
particie has an associated wavelength. Use
the de Broglie relation (7= h/p) and

N

orbit is equal 1o the circumference of that
ombit. Deduce how the de Broglic
wmclengthsof thecectonn e et hree

e of
These b, [CCEA 2000]
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~RADIOACTIVITY AND X-RAYS.

4 Carbon-14, decays by fremission, with a halfife
OF 5730 years.

A sample of wood found in a bog h
iy of 02084 shercomcn fox backgroued
radiatio

(a) Define the term decay constant.
(b) Show that the sample contains 5.3 x 10
carbon-14 atoms.

Lyear =32% 10

w

(©) An identical sample of living wood is taken
and found to have a mean activ

ity of

025Bq afier corection for background

from the bog.

A certain Xeray

Find the age of the wood taken

R 2000]

¢ operates at 110KV Calculate

the shortest wavelength of X-rays produced.
(Electuic g e) = L6017 re

Flanck constant () -

iy ofgh i e () = 300 10 ms”
R

)

[CCEA 2000, part]
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Nuclear reactions

The Einstein mass-energy
relationship
“The mass m of any body, defined by the cquation

F = ma (see Chapter 5), and the i
of the body are related by the equation

E=mc* @

where e

elocity of light in vacuum.

For a body at rest m i the rest mass and he
cun:wp\mdmg encrgy i®)is the rest mass

bt body were hen 10 move, £ woutd
increase on scoount of the oy acqiring
Kinetic energy and so.m increas

0 nuclear reactions the energy changes are
sufficient for the mass changes to be significant.

1 a nuclear change, . reaction, oceurs with no

The potental encrgy of the nucleus must fall,
and 50 the rest mass must decrease. The energy
Tost escapes from the nucleus usually as the
Kinetic energy of an emitted particle or as a 3+
photon, or both.

“The loss of rest mass or the energy released in a
is denoted by © (the °Q value’ of the
) and the loss of rest mass when
nucleus is formed from its component particles
can be called the ‘mass defect” of the nucleus.

Q s negative then the reaction cannot occur
without a supply of energy.

Example 1

Dot e cvsion o 501 < e
he
Wi~ Bpo s e tvaQ

234

where e denotes the electron which i the f” particie, v
es a neutrino and  is the cnergy that becomes
the kinetic energy of the particles produced.

“The masses of the atoms concerned are 209.984110u

for the bismuth 210 and 209.952866 for the polonium
210,

Caleulae the value of © (2) in joules and (b) in
clectron.olts.

Take Tu=17x107kg the spesd of light
€=30x10'ms’ and the clecron charge
€= 16 1071 C. The rest mass o the neutrino is zero.

Method

(Using atomic masses rather than nuclear masses
s hat e mases of 3 cectronsar incded i
the bismuth atom left of the cquation.
However the massof the pakmmm atom includes 84
electrons, 83 of which will balance the 83 on the left
.m the semaining one will allow themas ofthe beta

be neglected. In Adevel
Eiion o wil esme th hectn mass o
be overlooked.)

(a) The total rest mass on the left of the equation is
1984 110w and on the right it is 209.982866
The loss of rest mass which s the mass of the
eneray Qs

200984110 - 209.952866 = 0.001 244w

ol t s, using £ = mc”,
E=21148 610 < 3.0 10
=19.03 % 1074

(b) In clectron-volts, using 1€V = e joules, we get

=190 % 0%V or 119MeV

Answer
(@) 19510743 (b) 12MeV.



NUCLEAR REACTIONS

Exercise 29.1

1 A possble induced fisson reaction isshown by the
following equation
U+ fn =B+ glas3ln
What number i represented by the 17
2 Use he fllowing da o show it he inding
cnergy o Gie. o Uranium)  is
ity 11 10 MeV,
Mass of U235 atom = 390.295 x 1077 kg
Mass of neutron = 1.675 x 10 ke
Mass of proton = 1.672 % 10" kg
Velosityof light (in vacuum) = 3.0 x 10*m
1e 60x107"°3
3 Cakulie the enery in MeV. rekased in the

fusion reaction
0
The atomic masses
deuteriom H, 20141020
wiom . 3016069u
Iydrogen {H, 10078250
(1u-931Mev)

Exercise 29.2:
Examination questions

Where necessary s
econic hare (9 160 107C
unified atomic mass unit (u) = 1.66 x 10" kg
locy of fght in vacuum (e) = 300 ¢ 10 ms
Avogadro's number (N) = 6.02 x 10% mol™

(3) Part of a series of radioactive decay processes
s shown below.

agecay Baecay
—_— 7 e

Rttt - 2 mines
Fig.20.1
In a particular sample, the number of thallium
(T) nuclei present remains constant, For this
sample, caleulate the ratio
number of Bi nu
number of T nucl

it - 5 minses

(6) Give the nuclear equation for the thallum-207
ey, icdingany other prils ol e
roduce [OCR 2001, par]
I one s eaton, o deerim (1) i
combine 10 form a helium nucleus (3He). Write
i cuation o ths eaction ichuding rckeon
and proton number
The masses imoled are:
massa
THonudeus 201410
IHenuclews 301603
neatron 10867
Lu= 16610 kg

(3) Calculate the energy released in this reaction.

(b) Hence calculate the energy when

10k of deterivm el | lmc o form 1
ains 3.0 1

TEdeeel $.112000,par]

oo

4 A il s fision cen s reprsnied
by the equa
U,m,u ~ e + 3Ba+ 3jn
) Cate e umber o prons i he
of neutrons in the 3B nuclus,
(i) Caltte the snergy rlscd in one of
these cvents from the following

massof - 167 % 107 kg
mass of 25U = 390.19x 10
mass of %Kr = 15257 x 107 kg
mass of $Ba = 233.92 x 10" kg,

(6 Fstmte e sl power vt of s

power station which has an eficiency of
T s up S50t rte o1 4 % 10 Ky
IWIEC 2000,

wt]
Explain what is meant by the binding energy of &
nucleus.

Use the data below to caleulate the binding energy
per mleon for an sphaparil. Give your
answer in MeV per

Proton mass m, = 10073 u;

neutron mass m, = 10087

mass of *He' = 40015 [CCEA 2000, part]
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Calculations involving graphs
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Graphs and oscilloscope traces

Introduction

The way in which the variation of one quantity
ikt e anbe expeid a4 gt a0
alternative 10 an equatio advantage of a
raph 5 the quickns with whieh s imfommation
can'be grasped

Unless other symbols are preferred, we use ¥ to
denote the quantity plotied on the horizontal asis
(abscissa) and y for the other quantity (ordinate).

The origin is the place where the axes meet.

Plotting graphs

If you are required to plot a graph using
mumerical data provided by the cxam question
you should us scales tht gie  grph that il
the available space, that is convenient for casy
Ploting o poors i produces a gruph not

s wide as it is high (or viee

ey

Unless you have good reason to do otherwise you
should start both aes at zero.

Forcurte graphs (s opposa o sketches) 5
med that proper graph paper is used.
Pl A praph sheer ok st 24 sires
upwards, each 1 cm by 1 cm, and about 16 across.
Each of these s subd h fainter small
squares, 5 up and 5 across, inside each large

238

square. A voltage ranging from zero up to 10
. for example, could be plotied very easily on

cach of he ten sl sqanes (02em
paper) would repreent 01 V. The ploted valcs
Sid e m of he paper height.

The quantities being plotted should be marked
against their respective axes, together with the
units being used, with the quantity divided by
unit

Along each axis the numbers of units, e 1.0, 20,
o T 10V, 20V, e shoud b marked s
intervals normally no closer than Smm and no
greater than 2cm.

Example 1

The data below deseribe the streiching of a spring. Plot
graph of the applied force as abscissa and the
extension as ordinate.

Extension/ mm




(GRAPHS AND OSCILLOSCOPE TRACES

Method
As shown in Fig. 30.1, cach 2 mm of extension has.

values have used 11 out of the 16 large squares
oeg T T fosidlhive e
wider by using, for_example, 6 scale
o (6 times 2mm of paper) for cach
ewton so that 11N would be 132mm of paper
along the x axis, i.e. more than 13 large squares.
“This scale of 6 divisions per newton would make
plotting more difficult.

Extension i
o

3|

)

2|

24

2|

s

|

Fig30.1 _Ploting a graph (Large squares only shown.
Paper size 16cm-~24cm)
‘The best straight line has been drawn through the
plotted points with, as far as possible, equal
numbers of points above and below all parts of
theline.

Plotting a graph from a
formula

Suppose the formula is P where R is a
constant resistance of P denotes power
in watts and [ denotes clectric current in

amperes. You are required (0 plot and so
discover the shape of the grap
You comsider siple valucs of ome of the
2 the current, and calculate the
Corresponding P valaee S0, i we choose 10A.
0A, 40A and SOA, the P value for
1= 207 20° x 5.0, which is 20W, and the set
O il show b

14 0 20 30 40 s0
W50 s s 1

These are the values to plot. The shape of the
‘raph is as shown in Fig. 30.2d.
I oy 2 quick sete i reqiced rathe than an
accurate graph, the x s an be dimm
rasonably st o8 piia pepee

scale divisions marked at .ppn»ummy :qnﬂ
spacings,

Exercise 30.1

1 Plota graph of the following data, with PD (V) on
the x axis and current (1) s, and read
from the graph the the current expected at 47V.

PDIV OO0 10 20 30 40 50 60

1A 00 055 1o 9 25 31

Skt the graph o the forml p = 3 wher
isa fixed density of 10 x 10° kgm-", M is the mass
in kg, and V' is volume in m’. Put M on the y asis

Some common graphs

Iy, iie. y = mx where m is a constant (not
affected by variation of x and y), then we get
sight line which pames hrough the pont
0 (Fig. 30.2a). Other common
csamplc are o shown n ig 302

The most important of these examples is

yEme+C 53

Wheny e+ C he graph s staight
0 the line passes through x = 0, y =
'ﬂlu\y is proportional to x.

239
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Fig.30.4 Slope ofa graph

Note that for measuring the slope of a graph the
choice of origin is not important,

The intercepts of a graph

‘The  intercept i the value of y when x = 0, and
the ¥ intercept is x when y = 0, Often we need to
make use of only one of the two intercepts and
ve normally use he y intcreep. The grph

= mx+C has ay intercept C (Fig. 30.2b). For a
straight lin (v «.lincar) graph the ¥ intercept and
yintercept are related by

Magnitude of y intercept

o
129 |
30

WK |

sl Ly
E

Fig. 306 Graph for Example 3

From the graph the slope is 3 mw..ruonnx and

the intercept is 1000 008 and
o e ¢ 0.033Ry)
A

Answer

Advantage of a straight
line graph

Stope £ (or m) = S e et
30.4)

(sec Fig. 30.5)

Fig.305  Itercepts

Example 3

1fa graph is obtained with 4 st
casily determine the mathematical rc

descr
point (0,0) then it agrees with y = mx and m is
obtained from the gradient. If i has an intercept,
theny = mx + C an the slope and C is the
intercept.

Slope of agraph as a
method of averaging

Celsius temperature 0 conform to the equation
= Ro(1 + ) where Ry and 2 are constants. Plot a
straight line

graph from these results and hence
determine Ry and 2.

o°C 10 E w0 0
RO 03 1o 120 130
Method

“The graph is plotted as shown in Fig. 306,

To find Ry we first note the resemblance between

= Ry(1+30) and y = C + mx. If we rewrite the R
equation as R = R, + Rya0, it s seen that Ry is the
intercept on the R axis and Ryz i the slope.

In Fig. 30.7 the resistance of the conductor is
Vi

Fig. 307 Graph of  versus / for an ohmic conductor

241
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square_represents (in a_sense ‘measures’)
05ms™' by 055, ic. a quantity 0.5 x 0.5ms '

or 025m. So squares  represents
120 + 0.25m or 30m. More direly the ‘arca’ (by

ocking 1 te lage rectangle bekow e A) &

Th ara under lne B (ara o &
base x height) is 0.5 6x 4 = 12
average value of velocity times time ie. gives
distance correctly.

‘e area undera graph shuays has he dimensions
of the PRODUCT of the x and y it

‘The area under a current against PD graph gives
average power for example.

Fig.30.10  Graph of volochy versus time

Example 6

Fig. 30.11 shows a graph of intensity versus distance

eq
concerned. Obtain
from the charge.

value for the potes

1 015m

v

oo 55 03 o4 05 oF
Outance rm
Fig. 30,11 Graphfor Example 6

244

Method
The nunber of squats o the graph pper s conted
for the area under 5m

ore. The answer is about 66. The area.
es is 40V by 002m, ie.

53V approximately.

Exercise 30.4

1 An objct v i 8 siright lin with s
velocity » related to time
5015 How tr Trom i st B th ot e
the § scconds?

nce to Example 1 in this chapter,
ok done n reching th o
10 an extension of 24m.

The cathode ray oscillope

The cathode ray oscilloscope (CRO) can be
regarded as a very special voltmeter. A PD V 1o
be measured is amplificd and then applied to
metal plates above and below the electron beam
(Y-plates, Fig. 30.13

The beam is deflected up or down depending
upon the of V. The size of the deflection
is proportional (o the size of V.

When a voltage produced by the ‘“time base’
section of the CRO is correctly applied to the X-
plates, the beam moves steadily and repeatedly
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Method
Each peak of trace Y occurs 4 small squares after a
peak in Y, and this delay (lag’) can be compared with
i ces which amounts 10 20 small
15 of a cycle or 60 degrees
oot el of a0 egres)

Answer
Y lags behind Y, by 60°.

Exercise 30.5

Fig.30.15 _ Graph for Question 1

he srcnof s cahde o oo dpl
oS The s sty

020ms/em. Obtain values e
voltage and (b) the frequency of the alternating
signal.

An osclloscope is used to measure the time it
takes 10 send a pulse of sound along a T0cm
length of metal rod and back again. Fig. 30.16

g s 00

o i he specd of trve of the pue through
the rod?

[ ——

Fig. 30,16 Oscilloscope race for Question 2

By how many degrees are the signals out of phase.
in Fig. 30177

26

Fig. 30,17 Diagram for Question3

Exercise 30.6:
Examination questions

1 The diagram, scale 1:1, shows some equipotentials
in the region of a positive point charge, +4.

(3) Add two field lines t0 a copy of the diagram.

(6) Plot a graph of electric potential against
distance from the point charge

(© Wiite_d expression for _electric
potential in a radial fild.

(@) Show that the plotted values are consistent
h this expression.

(€) Calculate the magnitude of the point charge g

(Permitivity at vacuum (i) = 885 x 107 Fn ™!
[Edexcel 2000]
toaster is labelled  TSOW

2 An clearic
20V ~ S0z,
(6 Onacopy o the wesbeow sketch  graph 10

ow the potential difference across the
oaster varics Wi time. Add a sale 10 both



‘GRAPHS AND OSCILLOSCOPE TRACES.

State Einstein's photoelectric equation and
hence determine from the graph a value for
the Planck constant.

5 Alory aceelerates from rest.

The graph below shows bow the momentum of
this lorry varis over the first minute.

I

Momentum 10 Ne

(b) Caleulate the peak current in the toaster. e
[Edexcel 2001]

3 A sample of cabalt 60 s found to have an activty
of 8000 dmm:ylmnx per second. Make i of
the  graph © the number of

3

i e second aer s e of 85
years. The halflif of cobalt 60 i 53 years /

State the physical quantity represented by the
slope of this graph.

Determine the magnitude of this quantity at
=20,

Explain the shape of this graph.
[WIEC 2000, part] [Edexcel S-H 2001)
4 (0 e it sown s 0 b s 0 gt 6 The graph shows how the resistance K of @
e ot et Mortronetc gt film of platinum, conneeted to two terminals,
of known e s shone onto the varies with the Celsus temperature 0 in the range

cmisve surace. Describe how 300 would
find the maximum kinetic energy, KEna, of

the emitted clectrons. .
s e o
i) e
ov
(8) A graph of K, against frequency f of light
hone onta the surface s given below: P

e
The relationship between R and 0 in the range

a0,

20| 0°C-100°Cis given by
K104
o] R=Ry+ ko
° yhere s thesesianc o the it i st
d k i a consta

27
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© @ e e e o ik
ind the value of 0 at which R is zero.
) Commenon il

® @) Asuming th e r:hlwl\;hlp between R
C, draw up a table.

of the platinum fim at these values ]

100 200 300 400 500
138 1755 212 247 281

Show how R (sssumed lincar) differs
from Ry (measus

8 Which o of the mm bestrepresents the
of a photon

e mquemy/ e iion?
W "

over the range 0°C-500°C by plotting a
gaph of the diference AR =R~ Ry
inst .

(i) Caleuat values for AR as a percenage
of Ry at values of 0 equal o 200°C,
300°C and 400°C. Hence estimate the
value of 0 above which this percentage is
greater than LO%.  [Edexcel 2000, part]

7 () A battery has an emf of 120V and an
el sance o306 Cace the .
ry when it is delivering
Coment o308
The same battery is now connected 1o 4

filament lamp. The graph shows how the p.d
across the lamp would depend on the current
through

Use your answer (0 part (1) 0 help you draw, on the
same axes, a line showing how the p.d. across the

d d
o
[AQA 2000]

9 The graph shows the charge stored in a capacitor
a5 the voltage across it is var

ehargestored hOp

votage sppied V-

The energy stored, in ), when the potenial
dierence across the capeior i 5V, is

battery would depend on the curren through it A2 BS  Ci® D20
[AQA 2000]
10
Switch is initialy open and the capacitor
incharged.

—
o516 15 20

What current will the battery drive through the
lamp? [Edexcel 2000, part]

28

how the current / varies with the time 1
since the switch was closed.
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~

(&) On the gri . plot
test the relationship suggested between 7.
V. Record the results of any calculations

that you perform by adding (o the table above.
(b) Discuss whether or not your graph confirms
the suggested relationship between 7o and V.
[Edexcel SH 2001]

12 A cathode-ray osciloscope has its_amplifier

sens conirol set at 10Vem . (The
calibration of both amplifir  sensitvity - and

I
w

Use the gach to esiauie e toul chare
delivered to the capacit

Estimate its capacitance. [Edexcel 2001]

1tis suggested that the turn-on time, Tie, for a
liquid crystal display i given by the cquation

ko
T =
where s the vicosy,

V the voltage applied.
ess of erystal, and

Data showing how the tur.on time 7, deper
on e volage 1 s provide i the bl beon.

Turn-on time 7,./ms Voltage ¥V
5 200
10 142
15 116
2 100
7 086

this cx0.is accurate.)
An ac. voltage of frequency 10kHz is applicd to
the input of the amplifier. Fig. 30.18 shows the
trace obained on the screen.

Fig.30.18
o) Cultulmt the amplitude of the input

@ wnm s the setiing of the_timebase
ol? 1CCEA 2001, pan]
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Altitude of Polaris = latitude of abserver.
Ly
How far east or west an observer is from some

reference point is the ‘longitude’. The reference
point is Greenwich (near London in England) or,
you may say, a reference line drawn through
Greenwich from N pole 10'S pole, the Greenwich
‘meridian’. The longitude of a place i the number
of degrees the place lies to the east or west of
this reference and can be up to 180°E or W of
Greenwich.
The celestial sphere
Stars are at all sorts of large distances from the
Earth. Except for the Sun which is comparatively
close, the stars give the impression of being fixed
in position on a spherical surface that you might
call the sy but s nown s e mmm sphere’.
How far from the Earth you this 10 be
docs ot mater. The e "und pocs of s
here are as shown in Fig. 313. Polaris
e with the noihclesiah pole.

Nt koot
s cuestater

in

Fig.31.3 The calestia sphors

ition of a star s partly described by the
angle (9) its direction makes with the celestial
‘equator. This angle is the star’s ‘declination’ and
is analogous to an observers latitude on the
Earth.

Justas there s a longitude angle for an observer on
Earth, 5o for astar's position on the celestial sphere:
‘we measure an angle from a reference point which
is the “first point of Aries’. There is a choice here
between quoting this angle in degrees or, what can
be more useful, describing the angle by the time
that the Earth needs to turn to move through the
angle concemed. If the angle is measured in
degrees westwards from the first point of Aries
(FPA) then we call the angle the sidereal hour
angle’ (SHA) and this can be up to 360°

The sm ol 3 sar s the number of degrees it is
west of

If we measure the angle from the same reference

hour corresponds 10 a rotation of 36/24 degrees,
ie15%
An RA of 1 hour corresponds to 15

Declination related to
altitude

Fig. 31.4 shows how the declination of a star is
related (0 the altitude seen by an observer. The
diagram applies when the star is passing over the
observer’s meridian, ie. when the star
‘culminates’ (is scen at its highest position).
Remember that, in spite of the impression given
by such diagrams, the Earth is of negligible sizc
compared with the celestial sphere. Allowing for
this, the declination 5 = ¢ 42 = § + 90— A.

Declination = latitude pius 90 minus altitude

Beeeo0-A
Coestispnre
e

eam
/73
'

v
Fig.31.4 Doctinaton rlated 10 ahude
Example 1

The ar Dene (Alpha Cyi) b decinationof 45'
‘What s it altitude when it colminates for an obscrver
O Nencasier which has  ahade of 57

Method
bmgr-a
45255490 -

A= 55590 45 = 100
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orbit the ecliptic makes an angle of 23" with the
celestial equator.

As the Sun follows the eclipic it crosses the
equator in two places. At these times, one i the.
Sprng and ane n the Autumn,righ and dy st
12 hours cach. Th in the Spring (the
“Vemal equinox) oce v the northern
hemisphere) when the Sun s at the fst poin of
Aries. Consequently the FPA is often called the
Vernal Equinox (see Fig. 319).

P31 The surts et
Example 4

the formula £ + ¥ = 1, butifa and bare equal
the widih and length of the ellipse become equal
Y ey liveoN t<ecmeY el o

a giving
equation for acircle
In the case of a circular orbit the inwards force
a planet in orbit is mv’/r as
explained in Chapter 8. This force is provided by
the gravitational force F between the Sun and the
planet concerned. This force (see also Chapter 9)
can be calculated from

_ GMm
F=CH GLY
where G i the ‘universal gravitational constant’,
M the mass of the Sun and m the planet’s mass. 7
is the distance between the centres of Sun and
planet.So for a circular orbit
.
GMm _ m” (4 cancelling is possible)
aLs)

For an clliptical orbi the planct's movement

20. AUGST of 00 hours on that day which of the
P

Kepler. One of
these rules tells us i he Sun ot on of o

A 00 hours B 00 hours 04 minutes.

C 12hours D Some other value

Explin your anser.

Method

A the emalcquinor the Sun and ft pont o Arcs

coincide on the i sphere.

e PP shove e Gemich mordion (16

FPA culminates for Greenwich ). Howeve
culminates for Greenwich at the same moment, so

this is mid-day (12 hours GMT).

Answer

c

The planets and their
orbits

Pancs re bocie st 1t 8 e and o the
s a_planet The orbits are

generally i 10 cgg shape. Th

S havig the shape of an el s obey

254

the foc’ of the ellipse, as

Fig. 3110 Fociof the earth's orbit

Asuhs]of bk s St v sy ljial
b ocling e specal case of s cic) the
quare of the erbi peiod i proportonal 0 the
et ellipse length.

Tl 316)

Example 5
The Sun's mas is 20 x 10" kg, The distance between

the centre of the Sun and that of the Earth is
1510 m. Given that the gravitational constant G
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319

where J is the wavelength when the source is not
moving away from the observer
This change of wavelength due to movement is
as the “Doppler Effect’ and it affects the
colour of light seen, in the case of a spectrum
moving all wavelengths towards the red end.
Similar reasoning shows a wavelength decreased
10 4( {) if the speed v is towards the
observer. Similar wavelength changes occur if the
observer moves or both observer and source
move.

“The light from distant stars is moved to increased
wavclngihs on accoun of the stars movig away
from the Earth. This effect is known as

Y. Toe effec s grate for e distan s
because, according o the Hubble law the speed v
of a galaxy away from the Earth increases in
proportion to the distance d from the Earth

v=Hxd 3110

where H is the Hubble constant.

When a star s spining, one side oi it is moving

Method

® Thevmelngh e i, ghenby 8 <

The percentage increase in = % x 100

X100 _ 65102100, o0
. e

(b) The equation needed is v = Hi, where H is the
Hubble constant, v the speed und d the distance.

353107 m

(@) 20%, (b) 3.5 % 10° m approximately

Exercise 31.2

The Wien constant is 290  10°* mK. What i the
wavelength at which maximum 1 ocaurs.
from  star whose surface temperature is SS00K?

spectrum of

~

In the some
hese wanelengts
Wwould be 34861 10°'*m, but on account of the
sars movag may from e Eanh he
mesured  wanclength  is  greater by
0710 % m. What e s pec Sy
of light in vacuum =

The inverse square law

Consider light o ater xadm(mn emitted equally
formly) from the Sun, for

away anc e
obsreer, d aline n the xpectedspectrum will
experience both a d a decrease due
o Dopple et two lncswill resul

Example 8

A cluster nebul in the Hydra galasy is receding at o

speed of about 6 x 10 ms .

(0) What percemage increas i cmission wavelengths
docs his specd cause, and

(b) Whatistheappronimate distnce of this nebula?
(Speed of light in vacuum =30 10'ms ",
Hubble constant = 1.7 x 107*s™")

=xampx=. [f we are ineresicd in both the ght
ind Inisle radiaton. then the encrgy radiated
per second (ie. the power P) can be measured in
watts as usual,

At a distance r large compared to the size of the
source the radiation becomes spread evenly over
an imaginary spherical surface having an area
4zr, So the energy received per second by any
square metre of surface at distance 7, as in Fig.
3113, s given by

(&1
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Medical and health physics

Introduction

Example 1

The medical profession has devcloped many

Thus medical and

health physics is  very large topic cmbracing

many branches of physics. We have already dealt

with the following:

« Biomechanics of body forces (Chapter 4)

® The eye and correction of defective vision
(Chaper 1

o Fibre optics (Chapter 14)

i chapter deals with the physes of hearing.

applicat asonics including measure-

ot Mot nuw‘ e clfces of fonsing

radiation and radiation protection (including

absorption).

Physics of hearing

Intensity of sound
The eardrum vibrates according to the intensity of
sound ncident upon . Th itensity of a wave, be
it a matter wave like sound, or clectromagnetic
wave ke ligh, s givea by

casity 7 Power
Intensity 7 = Fove
The unit of intensity is Wm .

point source of sound emitting power P
uniformly in all directions will result in a sound
of ey 1 at 3 dlance ¢ rom the source
giver

1= Pz @20
“This s because the sound is spread uniformly over
a spherical surface of radius r and of area 4z, It
means that the inverse square law is obeyed (see.
also Chapters 28 and 31.).

262

(@ Cs intensity at a distance of 20m
from a source of power S.0m.

(b) If the ear of an observer can be assumed to be a
i adius 0.8cm, calculate the power of the
Sound entering the ear at 20m from the source.

Asume  that rure of the car is
perpendicular to the ariving sound.
Method

() We use Equation 32.1 in which P=50x 10"

and 7 = 20, Thus intensity / is given by

1= Plazr® = 50 1047 % 20°

— 0995 10 W™
(6) We know that 0.9 10°* W of sound i ncident
onan e of LOm’ata ditans of 20 fron e
ircle of radius 0.8cm, or 0.8 x 107 m,
gty ko

A= radios’ =7 x (08 % 10°7)

~20x 10

Thus, the power Pu, of sound entering the
aperture of the car i given by:
Pe = intensity x area
995 %107 x 20 % 10
=199 100w

Answer
(@ LOuWm, (0) 20107 W,

Intensity level
The ear can detect sounds over a vast range of
intensities — its response is roughly logarithmic.
For this reason a logarithmic scale called the
decibel (dB) scale s used to record sound level.
We define:

Jntensity eved (in dB) = (010, (U/10)
322

“This is the intensity level of a sound of intensity I
relative 1o a sound of intensity Jo. The average
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buman car can Jut detect o saund of ntcasy
07 “This alled

ing 1 sound s qumcd as
having an intensity level of, for example,

may be taken as being referred (0 this s
of L0 107 W2,

A constig s [ctcentyJ ol olar
corresponds 1o a difference in intensity level of
3.0dB. This can be seen from Eqnannn 322since

Increase in intensity level

= 10{logyo(21/o) = logyo (1/1o)]

= 10log,, (2111 (see Equation 2.12)
= 10log, 2

0148

Example 2

Caleulate the intensity level of sounds having the
following inter

(@) Loud music, 200 x 107 Wa
(b) Noisy classroom, 5.00 x 10 Wm %
() Threshold of hearing, 1.00 x 1075 Wm .
Method
We use Equation 322 in which
Iy=100% 10" Wm?,
(@) Wehave /=200 x 107 Wan " Thus
Intensiy level
10logy, (1)
= 10l0g,y (200 x 10°/1.00 % 10°%)
= 10log,, (200 x 10)
=103
“The imensiy level s 10308,
(b) =500 x 10°* W, Thus
Intensity level
= 10log,, (500 x 1077100 x 10°%)
= 10105,y (500 x 10°)
~669
The intensity leve s 67dB.
(© 1=, henee
Intensity level = 101og (Io/ly)
= 10log,y1.00 = 0.00
ensiy level for the threshold of hearing is

Note that since intensity levels arc taken relative
1o the Ureshog o heain, i follows that i
‘base’ intensity level s zero, since we use
Togarithmic scal.

Answer

(3) 103B, (b) 67dB, (c) 0dB.

Example 3

A music system

can produce a sound of intensity
o

W, Repacing e ampte vih s e

oneincreases  the
Frpgrt Expren th increse i dechls.
Method

From Equation 322 we note that the difference in
imendy e twcen i sountsof intensity /5 and

Tntensity level difference

= 101log, 110

logyy (i/1s))

=10log,q (/1) 59
We have I; = 9.0 x 10“Wm™ and /; = 15x 10
Wm . Equation 323 gives
Intensitylve differnce

= 1010g,, (90 % 10715 x 10°%) = 1010g,, 60
= 17808

Answer

The intensity level difference is 18B.

Example 4

The s mmu ey i » oy is 0040W 2 The
s by a worker results in a drop of
30483 1 pereived imensy el Clela

(a) the sound intensiy perceived by the worker when
wearing ear muffs;

(6) the intensity level () without car muffs and
i) with 3

Method

(a) We use Equation 323 with £, = 0.040, Intensity
fevel dierence B (note the ncgative sign.
since intensity level has decreased). We requirc
I Thus

20 = 10log, (1;0.040)
Rearranging gives
1 = 0.040 antilog (~2.0)
—30x10"

=~ 004100
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PHYSICS

“The new sound intensiy is 40 x 10 Wm

Note that a change of 20dB is cquivalent 10 a

sound intensity change of 100 times (we can sec.

thi since 1010g,, 100 = 20)

() () We use Equation 322 in which
Iy=10x 10" Hence

=000 and

Intensity levet
0log,, (0.040/1.0 x 107"
010g,, (40 10°)

(i) The new intensity level is 20dB less than
106B, which is 86 dB.
Answer

(@) 4010 W™, (6) () 106dB, (i) 8608,

Exercise 32.1

Reflection occurs when an ultrasonic pulse passes

across an interface between two media — for

example tissue and bone. Some of the energy and

intensity of the ultrasonic pulse is reflected as a

result of the fact that the tw will have

difereut “charcerialc acoeaic inpeispoe’
is shown in Fig, 32.

The claacieristc acoustc impodaace Z of »
defined by:

2= density pX velocity of ultrasound in

(Take the threshold of hearing as 10 x 1072 Wm %)

1 Caleulte the intensiy leve, in decibels, i the
following circumstances:

(a) for a sound of intensity 4.0 x 107 W
() ata amum of 10m fom ot source o
(Hint: first_use

Equaton e it the s ensity).

2 The intensity level on a rocket launch pad is
170dB. To what sound intensity does thi
correspond? (Note that this would rupture the
car drum,)

et the s n iy Lol begmeen
iwo sounds of nensy 20 10~ War! and
5010

-

alculate the intensity of sound that has
intensity level (2) S.0dB. o () S0 e,
sound of intensity 1.0 x 10°*

Applications of
ultrasound

Reflection of ultrasound

“The reflection of ultrasound is used 1o observe.

structures within the human body. An A scan can
casure distances in the body (¢.g.

biparietal diameter). A B scan can provide an

outline image of the foetus.
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the medium ¢
@24
Modm 1 admz
nctot ity | Tanamtios sersty
=) Velociy ot
e, Unieiac,
206, 0o

2

Fig.321  Reflction atan nterfaco

Values of density and velocity of ultrasound in
different media are shown in Table 32.1.

Table 32.1 Density and velocity of utrasound in certain
materals

Material Density/

10°kgm™
Air T30 10 0330
Bone 191 408
Brain 103 154
Fat 0952 L35
Muscle 108 158
Soft tissue 106 154
Water 100 150

The fraction  of the intensity reflected is given
by

z-nY
n+z,
lent intensity from medium 1

intensity reflected at  interface
between medium 1 and 2

(235




= 161 = characteristic. impedance of

medium 1
23 = pscs = characteristic. impedance of

‘medium 2

Note that if Z, =2, there is no reflected

intensity. 1f Z; and Z; are very different then

‘most of the incident intensity is reflected at the

interface.

Example 5

From the slus i in Tae 321, okt e
inctonof_ meriy et following
erfaces: (a) air-soft tissue, (b) wﬂlcphoﬂ tissue,
(t)w{lhssu:—lxm

Method
We use Equation 32.5 in each case.
@ ir is medium 1 and soft tisue is

medium 2 We hve

2= pycy = 130 x 330 = 429kgm ™5™
Zy= pier =106 107 x 154 10°
1635 10 kgm 7
Subsituting nto Equation 325 gives
pa
:(znz.)

_ (163 x 10° - 0.429 x 10
= Ter om0

0

o within three significam figures,
the incident intnsity - This s because
two media have very different characteristic
acoustc impedances.
(6 I s e wates s e 1 and s s
medium 2. We
2,5 :lmxldnsﬂxxrf
150 10°kgm
pa =106 % 10° x 154 10"
163 10°kgm st
Substituting into Equation 325 gives

" (§ Z.)’

(163107 150 10
T x10 150 % 107,

172X

Thus, very litle of the incident intensity is
eBcted and mast af K § rasmied i 1o the

o timue when uirmeund & ncident from
1. Comparison

(soft tissue). If this were not so, the pres
an air gap would mean that very lte ultrasound
would pass from the transducer into the body.
(c) In this case soft tissue is medium 1 and bone is
nedium 2. We have:
2z .06 % 107 x 154 x 107
o mx Ill'kgm'z -
2 = 191 % 10° x 4,08 x 10°
=779 10 kgm st
Substitutng into Equation 325 gives

(A)

_ (11 635 10°Y
G

—oas

‘Thus, 4285% of the incident intensity is reflected at
the boundary between soft tissue and bone. Thisis
a typical value which enables structures 10 be scen
‘within the human body.

Answer
(3) 100, (b) 172107, (¢) 0428,

Exercise 32.2

1 Use Table 321 1o caleulate the characterisc

acoustic impedance of (a) brain, (b) mmz. (© fat.

Calculate the fraction of intensity wi

relced at he boundary betveen (a) gl
) muscle and fat. Hence comment on

of ultrasonic reflection techniques o detect

the boundaries in (3) and (b).

Blood flow measurement

¢ Doppler effect is a change in the observed
f waves as a result of movement of

ferent frequency to the
t is Doppler shift Af can be
s s speed of blood flow.

5l Chapier 31,
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PHYSICS

Fig. 322 shows an arrangement which is used to
estimate the speed v of

vessel using ultrasound.

us
blood cells in a blood

It can be shown
compared to the i

1y D

26

where v is the blood flow velocity, c is the
(average) speed of ultrasound and 0 is the angle
of incidence of the beam (see Fig. 322).

Uirssense smcucer
[

Blood cals mowng
speedy.

Fg.322  Blood flow measurement

Examples
st oin o, s
ux frequency 5.0MI2 i incident a an angle of 3 1
el nd  Dopplr i n requeney of
i e, i of hrsound o b

We have
A= (radius = xx (05 107F

and v=076ms"
Thos Vg = 0,60 x 10 m’s™
Answer

(@) 0T6ms (b) 060 x 10°

Exercise 32.3

Typical values presen in ultrasound observation
of blood flow velocity are as follows

velocity of ultrasound = 1.5 ks’
blood veloci

Caleulate the Doppler shift in frequency which
‘would occur under these circumstances.

Ulirasound f frequeny 40MH i ident t

an angle of 30" 10 a blood vessel of diameter

I6mm n " Doppier sk of 33 b obencd
caleuls

(3) the blood flow velocity

(0) the volume rate of blood low

Assume that the speed of ultrasound is 1.5 kms ™.

loi

ng radia

taken s L5kms” is of diameter
mim calculate (3) the blood flow veloity, (b) the
Tl e ot o

Method

9 To i e oty ¢ ve s 0 g 25
have Af = 44 10°Hz,
PO T 0 W a0 me

Rearranging Equation 326 gives

510"

Afxe
SRS 10 0

Foosd

~076ms

(b) The volume rate of blood flow ¥y is given by

Va=dxr

vhere 4 e of crow scton of e Bhood
vessel and v = (average) blood flow veloci
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been dealt with:

© Xeradiation in Chapter 28
« Radioactivity in Chapter 28 (including actvity
and half-lfe, absorption and half-thickness)

Those further aspects which occur in medical
‘physics will be dealt with in this part.

Physical, biological and effective
half-life

Substances containing radioactive isotopes may
be introduced into the body, for exampie orally
or by injection, for therapeutic purposes or (0
enable the body to be imaged. This radioactive
material may be_excreted from the body by
biological means. Thus the decay of radioactivity
in the body is governed by two factors:




MEDICAL

 Maximum permissible dose equivalent for a
radiation worker = S0mSv per
faximum permissible dose equivalent for a
student = S mSv per year

Example 9
on workeris exposed o+ radiation which el
Tihetech

Example 10
“The exposure rat at a disance of 0.50m from  point
urce of radiation is 10mCkg'h-'. At what
Giance from the souree will the ‘xposre Tte be
0.10mCkg ' b7

Method

& Equation 286) tells us
ional to 1/7°. Suppose

(verage) absorbed dose rate at the  technicias
‘workplace. Neglect any background radiation dose.
Method
We e Equaion 3213 vith doe equlent
105 and fr 0 (
Rearranging Eq\nuon i ives

Dose cquivalent
aF

505
cls).

Absorbed dose =

_s0x10”
o
~s0x10Gy
T oo e f 44x 37 360 =586 10

Absorbed dose rate ~ Abserbed dose

Answer
The (average) absorbed dose rate 8.5 x 10 Gy,
Radiation protection

Itis usually necessary to control the exposure to
radiation of, for example, ~patients during
radiotherapy treatment andor to ensure that
hospital personnel are not overexposed. This can
be done in several ways:

1 By controlling the power of the source.

2 By controlling the time spent in the vicni
the source.

3 trolling the distance between the
mdwlduzl i e o s o

e (oo e 28), o s

S hat e havon potas o

4 By plaing sbsorber between the souree and

rea ~ use is made of the notion of
half-thickness to appropriate
shiclding (sce Example 7, Chapter 28).

In the following two examples we refer t0 3 and 4
only.

A the
that

1= 050m = Original distance, for which the original
xposure rate is 1.0 % 10 Cg ™ !

and

7= new distance, for whicthe new exposure rae is
010107 Ckg !

Then we have

Old exposure rate _ r?
New exposure rate ~ ?

Old exposure rate
New exposure rate

Hence r*=ry?x

0107
Thisgivesr, =05 % 107 = L3§m
Answer
16m.
Absoypnon

ays and 7 rays are both clectromagnetic
adiadom and therefore_show - exponens

attenuation by shielding. This type of absorption
been covered in Chapter 28 for 7 rays.

We refer to Fig. 32.3 in which:

incident intensity

rgent intensity

kness (m)

inear absorption cocflcient (m ')

I=ne @214)
The half value thickness or half-thickness T is
defincd as that_thickness of absorber which

alves the intens he beam of radiation (see
Chapter 25). Now:
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MEDICAL AND HEALTH PHYSICS

7 tehncin wors i hsrdouscvunmentn & A crais i i fory. e can b
which the radiston dose can be considered to card from two diferent machines. The sound
e 1o iow ewrom 1 he e oo Imensly T wih bt machines i operation
dose in tissue can be taken as 1.5 x 107 Gy in 86dB. Calculate:
one hour calculate: (a) the sound intens ly at puim P.

(@) the absorbed dose rate in Gys of the itched off, which
(9 e i i it e i o .m.\ o o i sound oty sy
work ne  year, Caleal
Scuing o miximn porssble whale body (5 the sound ntasly. produecd at P by the
dose level of SOmSy. ‘machine, prior to n {being swldle\l off.

8 The expo distance of 12m froma 5 (a) What is meant by the intensity of a sound?
mumuxl)zllmLkg”h‘ Calculate the exposure. b) A person has normal heari n,,ms
rate at a distance of 6.0m from the source. ® AP "’* F‘“my

9 The tenth valuc thickness of lead for SUKV Xeras ket

ue hickn e of e e o the penos a5
. Calculate the. i
@) the half value thickness (sound) pover a1 10001, niden on the
) th ioar sbarpion cocficient entrance 1o the car, which would cause the
e st g iy oy person o detct the sound.
©) the fraction of the original intensity cmerging
e o el (© Sound enting & room th open
through a 6.00mm thickness of lead. window produces a sound intensity I:ve( of
5S4 at 4 cerain point in the room. When
" X the window is closed. the sound.intens

Exercise 32.5: level at the point i reduced I B,

ination at Gl the fscton o te sound cerey

(Assume that the threshold of intensiy of he:
i 1.0 107 Wm - unless otherwise stated.)

1A point source of sound has a power of 12mW.
Caleulate the maximum distance from the
source at W
someone, given that  the
ey xhich tat persr's ear can deict
30

2 A suden st 4 vy o dco 1 whih e
 intensity level is 108dB. Assuming that the
vt s or o hows 5nd hat the o
imed 10 be of constant intensity and to.

bc mumw by the eardrum cver 2 s area
2em, the total sound cnergy
aciden o he et e o s e

3 The sound intensity next o a machine making

cans is 36 107 W, o deided hat &
necessary 1o intensity 1o
S W i she mcrem ofthe meshh of

the workers in that arca. This i to be achicved by
the wearing of car muffs. Caleulate

(@) the intensity level of the sound next to the
machine

(b) the reduction in intensity level which must be
achieved by the car muffs.

(CeEA 2001

6 The threshold of feeling is that sound intensity

level at which the sensation of anges 10
one of discomfort or pain. If thi is taken (0 be
intensity

12048, calculate the soun
corresponding to the threshold of fecling.

7 (2) When ultrsound s used for the imaging of
body st medium such as a

this s s0. Be as quanttative as you can.

8 Toe scousc ippedance of woh tise
0

conpling e o the i (lat  ere
et i, I he vy of
the is L5010 ms,

e e denig ot e ely.

# The flloming norusion el (0 ursound
passing through body tssucs

Tissue type Deasity/ Specd of
Wigm™  ultrasound/
10° m.
Fat 09 s
Muscle L 16
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Rotational dynamics

Angular motion

A net force produces a linear acceleration such
that (see equation 5.5)

Linear
Force F(N) = Mass m (kg) x | acceleration a
(ms™)

Similarly  net torque, or moment, produces an
angular acceleration such that

('l'oﬂlne)
TN m) ,
(Mm nf) ( Angular )
inertia | x | acceleration a
(kg ) s

@3

Comparing the two cquations we sce that I'

F, I replaces m and x replaces a.
Table 33.1 on page 275, lists a range of ‘lincar’
quantities and gives their angular equivalents
alongside.

Moment of inertia

‘The moment of inertia of various simple objects
about an axis of rotation AA' is shown in
Fig. 33.1.

A
g i dc. mass

s
eme

Ui sl sphers, mass -
dradiar

r-osme
(@ Untorm so sece

Fig 331 continued  Moments of inota of simple objocts

Note that the relationship / = Mr® can be applied

10 all objects for which the mass is effectively at a

fixed distance from the axis of rotation - c.g. a

hoop.

Note that the combined moment of inertia of two,
or more, objects about & given axis is the sum of
the separate moments of inertia.

Example 1

X

s ot s
08

Fig. 332 Information for Example 1

Refer to Fig. 33.2. A constant tangential force of 30N
acts on a wheel of radius 0.15 m which rotates about ts
centre. Calculate (1) the torque acting on the wheel,

) s angular scelesaion i he momentof nertia of
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Method
@
Perpendicular
Torque | _ (Force) [ distance d (m)
rom)=\Fe from axis of
rotation
@2

We have F = 30.and d = 015,50
[=30%015=45Nm

This torgue caves the anpilar sloky of the
wheel to increase in the clockwise direction, ic. it
has an angular ttcaton .t dociws
direction.

(b) Equation 33.1 gives [ = [, We have I' = 4.5 and
1=50,5

5~ 090rads
£ - 090md

T

Bvey scond the anga oy of the vheel

increases by 090 rads " in the clockwise di
Answer

(@) 45Nm, (b) 090rads*

Example 2

A flywheel on a motor increases its rate of rotation
uniformly from 120revmin ™" to 300,

Caleulate (a) its angular acceleration, (b) its angular
displacement in this time.
Method

00 We e ine snglr veocky on and i
in one revolution the angle
swept outis A

We have ¢

0, 50 angular aceleration i
Change of angular veocity
" Time taken
se @3

_ x4z
So,a = 1

brrad s
(5) Angular dislacement 0 i given by

= Average angolar veocity X Time.

= j@rapxe a4

S0,0= § (4 + 10) % 10 = 70 rad.

274

B oy e i o i
the e of w angular acceleration
{secben

Answer

(@) 06nrads™, (b) T0rrad.

Exercise 33.1
1 Calculte the required quanties:
T/Nm rads ™
(a) 30 06
(b) ? 35 40
© 36 06 2

g
) "
its angular velociy after
205, ) ts angular duplmemen! in this time.
3 A fped m e of e 040
initially ro
Lin 455 b o lmquc Cat
in rads”
‘e«lmmm (©) the magnitude of the torque, (d)
1 angulardipacesen  te e 155

Equations of uniform
angular acceleration

Table 3.1 on pge 275 s lincar quantities nd
their ‘angular’ equivalents. The equs
uniform angula aceclertion are

w=w,+ar @35
o' =0 +2a0 33.6)
0=+ Jart @)

‘They can be obtained by analogy with Equations
5,53 and 5.4 or ing Equations 33.3
and 3.

Example 3

A wheel is rotating initally at 90revmin™!. What
{oraue b requied g bring o et in 50 revolions
ifthe wheel has moment of inertia 0.80 kg

Method
‘We must firstfind . We have
o= 20 (90/60) = 307
= 0.and angular displacement 0 = 5.0 x 27 = 10=.




Section K

Further Revision Questions
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Miscellaneous questions

Unless otherwise stated assume the following
values:
g=98ms?

R=83Jmol K™
The sl shown i i, 341 & ol
Borzonraly ot S0ma-' I b 10 drop 4

ot cmorgeney gl 1o o vilage
community following a dissicr.

Fig. 341

(a) Assume that ar resistance is negligible.
() Calculte the maximum height from
‘which the crate can be dropped.
(i) Calculte th time taken forthe erae (0
reach the ground from this height.
i Expln Wy i maof the rate s 10
youraner o pars () an ).
0 The e
P, marked X on Fi. 341, Cacate
the horizontal distance of the acroplane
from X when the crate s released from
the maximum permitted height.

&) The et of he cue hits the ground

0 theKinetle congy ofthe e whenit i
ind;

@ u.< he e in rmimiont el
when the crate fall from the
Peigh caleunied i (9,
©) In practee s rssance s oot gl
Suggest and explain how the g
o cuculted i prts (0 and () o
‘compare with their actual value.
(A0 2001]
The London By i gl which rotte s
s sty sped n 3 vl pane
horizontal ais. A tota of 800 passerigers can ride
in 32 capsules cqually spaced around the rim.
A simplified diagram is shown belor.

o20met

//

(2) On the wh

*. Calculate:

280

of about 020ms" round a circle of radius



ALCULATIONS FOR A-LEVEL PHYSK

s has besome Koo as oty ad e
parsgaph below ilsirates  posible sppirion
that may be in the next tweaty or
thiry years.
1f people suffer from very poor circulation, issue
become damaged. A temporary  solution
would be 10 repl
blood cells by manufacturing tiny spheres full of
compressed oxygen an these dircctly into
the blood stream. These spheres could. then
slowly release their oxygen.

Nantecology offers the promise of making
remely strong, diamond-like materials in any
be mass.

toa pressure of 1.0 x I

@

the meaning of the word nano when

wsed as @ prefx in front of a unt.

(b) The spheres are filled with oxygen at a body
temperature of 310K. Caleulate the number
of moles of oygen in one sphere. Assume
oxygen behaves as an ideal gas.

@ The et oygen conumption o an adt
per tmospheric

(d) The strength of the material used to make
hese spheres must be extremely high. It
uld b rable 1o
brsaing st of $0 ¢ 10

i el i ke s
any assumption made.

moduusof 1.« 10" Pa. Calelte e i
stating

Explain why large valucs of breaking siress

and Young modulus would be such vial

et Tor the et el s
applcation

State one other property
used in this application should havs
Edeee 51 2000

heet the firt

15 (3) On your Data and Formulae
I in the form

law of thermodynamics i quotet

AQ=aU s AW
(@ F g of u e mas of
£, ey the e AQ. AU

i this cquation.

286

@ 303 of thermal encrgy s suppied 0 8
of gas in a cylinder. The
ot dong 203 o werk.
1 Useth first law o themodymanis 10

How could an experimenter detect that
the il cncry of e ga bad
cllang:d ‘and deduce the sign

chan

{b) A sheet metal worker uses a hammer to beat

o rest 50 that al the ineic encrey of the
bammer ead b comered 1 hermal corgy
Farmmes blows continue a 3 regulr e of

() Caleulae the kinetc energy converted to
thermal energy in one blow of the
hammer.

(i) Calculate the rate of production of

i) The mas

ise of temperature.

16 The joule is the SI unit of encrgy. Express the
joule in the base units of the ST sstem,.

A candidate in a physics cxamination has worked
out a formula for the kinetic energy E of a solid
sphere spinning about its axis. His formula is

o

where p s the density of the sphere, i ts radius
and / s the rotation frequency. Show that this
formula is homogencous with respect to. base
units.

‘Why might the formula stll be incorrect?
[Edexcel 2001]

7 An electric ketile is marked 23KW.
) Caleate he ottt woukd e o
supply.

(60 A hooehatr s cbe fom i osc 10
2 shed a the botem of bis arden,
oo e e o the Sl 0 e T30
e upply i s ke and he other
10 an electric socket into which he phugs the



A PHYSICS

(i) At a time equal 10 one time constant
st e i i o, V I eqs
i w constant less than 1
Complee Table 4.1 gving the valuesof
¥ at various times.
ablo 34

. A

Nam athematical _function
describing the variation of V" with
) b be pumerca) ke of the

© ﬂm cecitor in the st of Fg, 3413
s 24, m et bt
use of y

it T 31 yout azsver 1o
(), or otherwise, estimate the time after
the svich is cosed fo e potctal
across the capacitor fo fall to

b nfm initial value.
(e=2718) [CCEA 2000)
22 A coil of selfinductance 030 H and resistance 5561
s 1o be suppled from 240V (rms.), SOHz ac.
source which has zero impedance. Find the values.
of the componets that must be put in series with
the coil if the current is to be 1LDA (£ms.) and in
phase with the applicd voltage. [WJEC 2000, part]

23 The voltage output, ¥, of an a.. source is given by
he expression

¥ = 10sin(200=0)
where ¢ s time, measured in seconds. The source.
s connected 0 a 0.50H inductor in a circuit of
egligible resis
(i) Caleulate the peak current in the circut.
() State the phase relationship between the
current and the supply voltage

foCR 2000, par)
24 (a) State Ohm's Law
® 03
I ]
ban

‘The graph shows how the current through the.
menl flament o g depencs on the
applicd across it.
() Calculate the resistance of the lamp for
potential differences of

060V,
an 6ov.

(i) Discuss 1o what extent, if at all, Ohm's
Law applies to the flament.

il difference across the
flament_is 60V ity temperature is
2100°C. When the porentia difference is
00V the temperature of the Flament

approsimated 10 0°C.
(1) Caleute the temperature cocfficient
of resistance of the Flament..
(1) Explain why the approximation is
reasonable one.  [WIEC 2001]

25 Fig. 3414 shows an X-ray tube.
(8 The cabode s 0 ungtn wie o ength of
a current of 16A. The
\nvuge across the cathode is 6.3 V. Cakculate
sectional arca of the wire.

conductivity of tungsten = 20 x 10762 m

Eictrs, Eracunted gas b
gt
Fig.34.14
is 30W, which is

® The Xt o por seveted s
of the. input (0 the tube. The
rmulmng entrgy eais up the faget n the
snode, The e s » tegaen lock of e
Opbty. Gl i lnki e
tempersur e of te ungsten block vhon
e Sy tabe 5 trned

ecific heat capacity o ungsten
400k K 1A0A 2000]

26 In the cathode ray tube illustrated in Fig. 34.15,
electrons are accelerated by a potential diference
of 18KV between the cathode (C) and the
anode (4).

@ @ et the kineic crrg, i 1, of the
they have passed the

charge on an electrode, ¢ = ~1.6 x 10°C



jons

27

Fig.34.15

) Calste the vy of th coarons
after they have passed the

s of lcron =9 x 10 kg

) The s P and Qo i bong s s

separated by a g

() Define elennc p g

G Caleulate cing on an eleciron
W i between B and @ 04 s he

dirctio

(i) Caleulate the time taken for an clectron
10 pass the pates.

() Caleulate the vertcal component_of
sy at the time the clcton cas
the clectric field berw

) Calcoate_the adﬂlmnal
displacement of the )

i e the o Bl beween B
and Qand when i reachesthe sreen.
(AQA 2000]
This queston & sbow the st el
amercm 241 wedin domesti smoke dte
Tk that shown i Fig.

d Q.
il

Fig.34.16

@0 Anamerkchn 241 uces dcays by eiting

particle, and forms an i of

neptumum, Complete. the cquaion below
that describes this decay by adding

(i) Hence calculate the mass of americium-
21 used in the source. Avogadro

.0 10 mol
[OCR Nuff 2000]

constant =

28 Fig 3417 shovs s i ot 1 20V
a 0250 resi

the resistance of L are negligible.

200
s

Fig. 3817

(@) Afer clsing S the curentn the i s

change of current can be assumed
constant at 40As™.

() Caleulate, for the instant_when
curren s 020A, the poental diffrence
(pd)

1. across R;
2. across

i caleulating

the inductance of L.

©) The curent i the it cenualy besomes

O Gt e magnitade of the scady

current,
(i) Expla inductor L plays no
in deermining the magnude of s
steady current [OCR 2000]

29 (s) Ursnium238 decays by alph emission 1o
o 4. e et e s
somic mass unis, v, of the mucei of
rnsom 335 (R0, Shomme 334, and an

alpha paril (hlium4).

MAm — PNp 4 He
®) The bl of americium-241 i 490 eas.
y o, A fo ths
imvpc priv
Tyear=32x10's
(©) (i) Calculate the number of americium-241
nuclei in a source with an activity of

461

1 atomic mass uni
speed of lectromagnetic

=30 10 ms
=66 10405

the Planck constant

289



Hints for examination

questions

Chapter 3
Exercise 3.4
TSt

s e m fort,ms " forand s for,som for
wms ? fora, s for P
2 {fore) W MLT o1 g
sight-hand side of Equation?
3 ) () SeeEquton 211 inCapir 2
Obain value for = from calculator

. Dimensions of

mE

Fm'
Chapter 4.
Exercise 4.4
120 s
2 () Tsin 30° = (i) T cos 30
3 80N tension throughout rop. For  section at 40
10 horizonal
0 ol e 000
(i) vertcl S0sin 0
et e ad moment s b 20
5 (¢) and () See Example 4
6 r e toomm

' wa Lon

7 (a) and (b) Net horizontal and vertical forces = 0
kvt moment du 0
Jockwise moment duc to X

Bito
Principle of moments

10P=R+Q and Px3d=Qx4d
11 See Example 7

12 (b) 1 and 11 - take moments about P
3

Chapter 5
Exercise 5.9
1

3 Equation 5.1 to find a. Equation 5.4 with { = 10
4

5 (b) (i) 11 and 1V - sec Example 5, Chapter &

ec Evample 9
8 @) () borzontl component s cosat
(i) 188 = magaiude xcos 40
(® qunion .

291



pHYsiCs

© PE bocomcasored eners Woe o gl b

ctesons.Sorg(+4)
flso T = oo 4 w/E.
Nonipe o 0 nd & N €1
7 (5 (h Equasons 104 4nd 105
(i) Equations 10.2and 103
8 (a) Example 7(a) (b) Equation 102
9 ) (

) Estmple S - ead i o sn!ph
(5 o 1
() Esampe 2
100 (.) Eample
o o shortest v at b
& n;...,m.. 102: energy o F for same
extension
11 Equations 10.6 and 105
12.0) () Equation 105
(i) Equation 106

Equation 10
13 See Example §
©) () and ) Al
107 and 105
(i) Equation 103

002 = 2. Use Equations

Chapter 11
Exercise 11.5

ion 11.3 - o find
_qmmn 115 o fnd o v

3 Reomsat frequency at skl Fnd T, s
e Equal

(b) Equat o 113, wsef =
5 6 et o 1001 (10001 ot 1 \pnn; - use

n 11,
0 Tt 0k v pring: o 113
6 (a) Exa
(V) Since W i then f o 1/ym
7 (b)) Equation 115 (i) Equation 11.3
(©) () Equation 113 0r Tx yim
8 Example 3(b) and (¢)
9 Equation 11.6 shows 7° tandibesames(t+18)
197 g o pendlum, rom Exuation

2 ) /4 where 7
Or see Example 3(b)
13 (s) Equation 115
(b) (i) Equation 113

v and @ = 20,

(i) Eaumple 1(a)

i) Example 7(¢) (i) Example 6(b)
18 (a) & (b) - sce Fig. 112
(6) Exmnple 60) bt ot i ghes e aflermid
oy 2m

15 (0 Time. bclw(cn um cmmplc] peaks
(b) Equation = 0080m
(Compare i e - ey

(©) A sin’ graph: KE is zero at extremities of
oton

7 and v = 25/

16 4

Chapter 12

Exercise 12.8

4 Equation 121

2 Find  and . b

3 ) Disaee Speed x ime: s disiaoce bt
Ffor Pwave, 130 for S wave. Sohe

slmullmcnm equations (Chapter 2)

umber of cycles per second

1L 203372 froms = 07 =00
(i) Equation 1

7@ 0t nnw,.,. J=yT
(i) E

(496) e specd  ime: same disance
bnnlumu!m"\n\z (-+65) for Swave.
imultancous cquations (Chapter 2)

5.0 e 1 Fmion 131 o e T )

Wi 2 3600 s thof o peid, Henoe fnd
1, then f and use Equation 12.

2100, 2+ cquisiont 1 unwlcnglh Thea
o BT 121

0 o sk Example
right (m\ge means a whole number of

f
3. Hall » fapge sepraton fom €
12y andyx la
13 (0) Equation 127
@y q
Uy Mor g pscs o s
1/

ol mumber nfwnveleﬂgl!ﬁ in glass
(Ny) and air (N,). T extra
valengls nesdued by which
i, Fo direcion -

 the patiem st
where does the zero fringe move o’
4 () 15w mgm.numm(,

(1) 087m s 42
" Thca find acw 4, heace new f(or

15/=2L

1)
W) 0= (iefi
17 ) e 2120

Equation 124

2o
.8 (u)(u) Handamental, i —
" Numiber of wavelngibs in

(i) 2= cjf and L=7/4
(i) Repeat above



TS, 1oNS.

Chapter 13
Exercise 13.3
1 B 131

e Equation 1

H bqu.:mon 51 Serup 2 cqu:mm\x with sam
Indd Vel (d unknown. Diide eqution (6
climinate d

4 (b) Example 1 1 find maximum 5 value. Note

©.001/380)m

5 0= 223" forn = 2, Equation 13.1 to find d -
convert to mm. Calculate 1/d.

6 (2) Oy = 19.15° thu = 1255°; Equation 13.1.

0.

4= 0001/5

() See Exmpe 1)

360 10,

fra red), n
(violet) and n = 4 (ultra violet). For next
‘common angle n becomes 24, then 3n and so
on~determin f 20 or 30 ctc ae pose

(sin 0 < 1) and
&) Essagle 1) o s i o Jd
(less

9 (1) Eq\l:num m (h)"“’
Lid.

12 Example +
13r-L0
18 (b) Example 5. Part (i), ¢ deereases
15 See Example 5, - unknown (= L0)

Chapter 14
Exercise 14.4
1 (b) and () Equation 14.1

2 @ogmonisl 000850
36 et 034 0 minucs

3 Eqution 1.

2 on 1.

Daaeuple S

5 (3 Fauion 141
(b) (i) Example
i Angle of

fence at wall = (90 - )

TIR?

6 (3) Equation 14.1
© Equin 144
(©) Example 5(b) to

7000 Eawion o

8 Sce Example 6

9 Example 6. For (c) time = distas
N vron 1410 spend i e

i Fi 108 and 107

2 (redn =3

Chapter 15
Exercise 15.4

10 Gym=2v=

e 1)
3 (0 Dherging s,/ =
() Equations 15.1 o153 Sce s

(@ 1  bocomes (4) 360
istance moved + time
dcqcmc; See Fig. 152
a6 nmgm,x
Equaions 151,153 and 525ma0
@ Comerging ks Equaton 1532
02 . Sbsinte for i n
Equaton 151 10 fnd
@ See i, 1510) and 152
(©) Eq s m = 8.0, So Equation
153
Noe (0 1) = $67am, Substiute in
equations 1o find v and u. Then Equ

150,

o find
5 () (i) Equation 155
(b) (i) Obiccive (converging) lens forms image
i acs s ot o the g ke
(ii) Equation 15.1 with f=-20
(i) Sign of v

(©) Decrease u, inerease v

®) () 1 Equaton 152
3. Equation 153 gives u = ~25
Subtite in Equation 151 o find
v, hence u. Sec also Fig. 152 and
Example 2
8 (@ Equon 155
() Eq

i 15.1; sce also Example 3

mpit

10.(6) (i) Equation 15.1 with
Equation 15.5

=17, ffrom

) Find power for u =
(i) Normal near point s 025m
11 (o) Caleulate fof kens.
(b) Fig. 156(b)
12 (3) See Example
(b) (i) Equation 15.6

Caleulate value of the new unaided far
int

q

13 (&) Example 7
14 See Fig. 156 and Example 7

Chapter 16
Exercise 16.3
- 120emv - -120em
(@ Equation 151 (b) Equation 164
See also Example |
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a PHYSICS

Chapter 23

Exercise 23.2

1 () Equaion 231
(i Need same valu for Iy s

2600 T e mament 502
(b) (i) i = net PD/r
3 ) Comertm 0. Eq

2 Eauaion 2104 F = i

jons 23.4 and 21.4

Chapter 24

Exercise 24.4
3 atons 25 0

2 (a) Equation 24
® 0 Fqu:lmn,‘7 ot v o
cular 0.5 (A cos ) orefectve

T perpendicular 0 5160 4 (-8 co )
(i) - o, Equations 245 or 246. Equation

20r 241

3 Equations 245 and 242

'8 Equations 242 and 24.3. New flu s duc 1o Vigy
i e e of window

5 Sce Example

Chapter 25
Exercise 25.2

1 Equation 25.1
2 (i) Equation 252

and 248, Should

6 O
) Nt Penagore and a0

Chapter 26
Exercise 26.4
1 Bntons 9 and 51
2 Equation 2
3 (3 See ten

RO (i) peak /2

R+ (oL~ 1/0C)’ (Equation 265)
mmmn 265 and 2 = tan ™2 (Equation 269)

5 (o) R
{b) Equation 263, Equaton 205
6 Equation 26.13 and Example 10(e)

Chapter 27

Exercise 27.2

1 (i) Left-hand rule
(ii) Equation 23.4
() Equation 8.4

208

2 Equation 27.2. Note the 3 significant figures used
Lmy? (Chapter 6).

in question. KE
De Brogli

. see Equation 27.6
3 Equations 279 and 27.4, and look for energy

4 Aand 211
(5 (1) Subsiute answr 10 () o given Equaion
Qn=1
6 Use cquaion 270 snd st o me
sing cqaton ghe. For ot oris
e cquation ewing

Chapter 28

Exercise 28.5

1 (i) Equation 283
(i) Equation 281

(i) Equation 2520 or 28,40
2 (b) (i) Equation 28.4b and activty is o mass (see
5)

(i) Equation 28,20 with mas
3 For half it read from grapt for 10° atoms Then
use Equation 283, For e of decay draw tangent o
b Forcllied e Equaion 5.1
4 (1) Equations 281
[t ——
Use Equation 25.1 Simplify and take logs of
bothside
5 Equarion 25810

Chapter 29

Exercise 29.2

(0 R o dcay (- 23) o B s o

T Fquation 283
) Nodeon mumbers o s ) e

and proion aumbers

2 9 Newion s e 5. Comert s
ifference n 0 to kg, then s Equation 201 to

(0) 15 10% pairs of nuclei
3 () (i) Nucleon numbers batance and proton
numbers balance:

() Equation 20.1
(& For ol see Chaper . | mol of U 25stoms
hus mass 235 or 0235k
4 See Exampie 1. Comert kg 10 joules using
Equation 29.1. 16V = 16 10

Chapter 30
Exercise 30.6

1 (¢) Equation 21.6 in Chapter 21
(€) Assume vacuum



5 (a) Work done
(b) mgh

(©) Energy ‘lost

Fia
© @ m — s of cables-+ mass of Jouded
See (b). Maximom safe stress i yie

stress 4
Find mg for (say) cable alone, or 3 cables

huadon Compace

6300 (3 ot s fore = o
downwards force.
4:) Eions o 02

(ay Eumyul{ s cm,ms

ke b
yﬂ Fand time - dianc ¢ peed
rad

© mn. e
@0~ ey sord
10(@) (i) KE -
,m..\n ) = My
Simple proportion
nw m mass x velocity
(i) conservation of momentum;
A0k

med

13(3) (i) p¥ =nRT

@ 0% o

me x rate of temperature

16 For dimensions and s see = Cpte 3 l\lul: is
unit for work (work = force.
6.1). Acceieration

o, qummn AT

Urism "
17 (i) Equation 20.14
o )t e scond = IR
Equation 2019
(i) Equation 20.14
19 For EMF and cell in series sce Chapter 20. Need
the three cels in series to get more than 3V. PI
across the battery of three cells is 3.5V. Vol drop
across the intermal resistance of the cells is 1OV,
Sec Equation 2016
' resistances in series and paralll sce Chapter
20, Equations 20.6 and 20.7
(b) (§) Equation 205 can be applicd to the 602

(i) Current through R, is not 4 A nor 15A
@) FDbervon X a2d V7
21 For capacitance
) () See Equatons 305, 0.1 and 21
(i) Time consan i e for Vo ol 0 Vi,
see Chapter 22
(iv) Consider 1/¢ as 173 initially. Then try with
= 2718, 1/e = 0.368

current limited by res
23 ) For indetanes s -
ation sce Equation 26,1
For peak values see definition of Xy preceding
Equation 266
(i) For phase difference see text dealing with LCR
circuit
24 (3) Sce Equation 20
® O () R= /1 (Euion 209 = 1 gradens
G o= Eqai
25 3 avon B = 1. Al Eqution 215
oy P pemenge s s
w0 0 B 215
KE
® 6 Equnmn
) (Equmonzl 2 and £ =V/d
14)

gt m Chapter 6)

(i) p depends
© 0 oo ety el
(i) Pomer = work done + time taken ation 5.1
18 (6)pV = nRT R mm«mu.-ugm
(¢) Simple proportion, 1m® = 10° cm’; Equation 283
» Eauation 25
@E Im]ecfpamdn it e
15 () See Equzunn 1 grams
® (b e bt of o o
(i) R of enery ranster Chapter 3)
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Answers

Chapter 3

Exercise 3.1
1ML

2@7
3Mg'T!

O @ LT

@ ML
»MT @1

07! (0s temperature)

Exercise 3.3
T@asmet O
(€) 04 (@) 20005 "
2 llkll)tllmll ’
Exercise 3.4

1 (a) Al terms have same units
(6) ALt can e same unis bt umbe
2 if { were omitted

3@N

Chapter 4

Exercise 4.1

1 (2) 4N at 1210 15N(b) 36N at 52 10 SON
2 67.IN ar 634" 10 30N
3 794N 0 409" 10 30N

Exercise 4.2

1 (a) 41N (0X), ~L4N (OY)
(b) 43N 19" 10 OX

2 (@3N ®)a.
3 () S3Ndownplane  (b) 9.7N up plane.
Exercise 4.3

1@O2KN () 1SKN

2 (@ 0BKN () 027KN () 65kg

3 @12 (b)) LIKN (i) 031KN
ast

302

Exercise 4.4: Examination questions

1) 100N (i) 173N (i) Max value = 200N
2 () 40kN KN (346KN 10 3 sig fig)
3 (b)) 0.14KN (i) OI3KN

5 () 200N () 3N
(©) Tension ncreases markedly
6D

7 (1) 100N

(© 15Nm
8 (i) 65N o
260 (1 G310 Sr0Nm

0 Nettoe =0

() When F =0

(©) tncrease angle beyond 60° uniilload just clears
end of cranc body.
)P =

100 2500N, 0 = 1875 N

P,
NGO @ DL dovmars
2001246

136N
Lower C of G, widen base

return
130 N

Chapter 5
Exercise 5.1
Denarton

.m l(vlvnxmaldwtmun
3@ 300ms” ()5

Exercise 5.2
1@ 2ms
2 (@) 25ms ?

2um
(1)80s,128m  (©) 105, 125m
Exercise 5.3
1 360ms*
2 (@) 305 &Bm
(€)= 6.0s (for s increasing) and = 14 (for s
decreasing

8
380x10°ms ?

Exercise 5.4

() 30ms™!



ANSWERS

Exercise 5.5
1@4ss  )Ism
(@) #5ms", 40ms™
2125m
3@7s ()3skm (©) 74km
Exercise 5.6
1T@TSN  @0smst () 30kg
2 (@) 40ms? (b) S0m
3 (@)S6KN  (b)32kN () 16KN
a@aemst () 75K
5 36kN
Exercise 5.7
1()A-B,0ms % B-C,020ms
C-D,-06ms"

(b) A~ B, 0m; B - C, 80m; C - D, 30m;
Total 150m
910" m

Exarciasg

®izm (©9m

2 Somes
Exercise 5.9: Examination questions

1 12met a3y whoronal

THO25KN; I ISKN;

(i) £ =605
6A

7 @30 (®)75km () 039kms”
8 () () 88ms (i) 245ms

(@) () 169ms’
9()ss (i) 46ms
104

16@20ms ! ©065x107ke (@) 7Tmy
17.(0) 42 10 s ime approx S x 10°s

= @djar'g

WO 0067 @ - Tams,

19 @067s (b)) 661 (i) (~) 598k

(& Deceeration resonsbly constant, therefore

consisent
(@) Increase braking distance
Chapter 6
Exercise 6.1
1@ty eoxity
(© 18 % 10
2 (@ 1sms ®25m
(©) 33 (33751
372N
4 46ms!
Exercise 6.2
T@HI ) 3w
2@50m  (b)020m
01
416ms"
500 ) 15ms”! (@ 15ms
Exercise 6.3
1 @02k (b)28m
218
3@I8 @asN
Exercise 6.4
T@IOW  HIOW @ 24w
22
3 @10 I0kes ! 020 % 10kes
4@ IBKW  (D)36KW  (0) 25KW
5@BEW DKW (© DKW
§ @ 064KN  (0) LOKN

Hhssm @Ns @106k 7@ B3ms ! () 80ms!
12 (b) () 30N
13 56KN; Forces: B40KN 1wngm), 168KN (forward);  Exercise 6.5: Examination questions
124N (ucvards) 110(5) % 10°)
14 ) 06m )1 120m; 1360m 2 (319N
(@ velooty =0at 555 (5) (i Only the horizontal component docs work
15() () v ) 24M) (i) 0.13KW
| PO @
] 02\
i) osnkw PE becomes PE ¢ KE
Pl
= s () ©57ms '
@ 67 361
1) (305 Sm 105 sk
© () 59m ) 2ms” a2z ohorzonal 8 (2)65x 10M) (B)IBMW  (€) 024k

303



PHYSICS

@17 10'Wp i o wios)
than (b) @ (1U(1 - V0.9))
9@ @795 10) ()29 < 10°W 7 (@) First bmmcelm)\ To come to rest 1 = 245
10 (3) () SSOm’s s 660kgs (i) 3K since where v —
b) I3kW R 10 ms
1@ 00KW () STMI (i) Velocities reversed ~ move towards each
zOODm @V ather
13 (a) 14 802410°ms”!
) vam ol (e 05 withon sisive
s, 112W with resistive 2Ns ~18Ns
© Slmnm!m: o et e e 0 Gi) 40N BN )59
11 (2) SNs ®)75Ns
WIS o 60w 12 (b) (i) Change in momentum of ball
15 () approx. 70 <!
33 10°W ) ppres 350 0!
13 1) () 208 % 10 ke
H3Sms T4 G osommet " sk
030 (®) 01N
0 e ot s s x e« desty = 3150
() 4% 10°Ns
14 % 10°N
Chapter 7 & friction, turbulence losses
1600y Tl i) 5.12) % 10°.
R ® O 5100
1 (3) 75kem ®)40ms’ ].'uymmmg effect about base of tower
2@ l(lkgm) T O l0kems (90 {6 tappny 2
Exercise 7.2
133me Chapter 8
2 067ms
3 19ms Exercise 8.1
Exercise 7.3 T@aTndst @osems (@ 13s
10330 2 003rds”
2163 .
Exercise 8.2
3 1 LN, o
Exercise 7.4 32N, 1oms-! atbottom
T 0s0me ! 3 Som s rout
2042m
3 807km s forwards Ul
1@ SSN
Exercise 7.5
Exercise 8.4: Examination questions
2608 17310 007
3 40Ns © 0.
20 h)9‘2mux’ @ teamss
Exercise 7. i 3@ o835 =
1 @IBNs @ 12Ams ) 233 D3N (@ 274 % N
@773 10°m @sbms™ (© 911
2@ (©) 6.0Ns o the right 463

u.;zzx 0N ®oems T i) 18k
Hsh V:kxm:s. ot . sccond bl 0 v
jon) or: first ball (~1/19) and second
i

22 5019 ot botom of i
6 ) () 12(5)rads™ (i) 4N (i) 35ms™

(i) 26ms™" (i) 65rads”!
(6) 7 x VUL ype graph
8 (@) 24(S)ms *



PHYSICS

L9 10 T, Myl creps sl doestt
120) ( mwm"pa (i) 48 % 10" Jm

13 @)

B O @ Laxire @0z

Chapter 11

Exercise 11.1

3 02588

3 @ Lok ) 0635

4 20M:

Exercise 11.2

1@0Nm 0w @68

2 (a) 155,065Hz ()0, :00ms

3@0zm  ®oKEm (6

4 10m.084m

Exercise 11.3

e 0 05 0%
yim 0 2% w
w0 00 0
ame® 0 03 0%

“The remaining values follow by ‘symmetry’
(b) time = 0.10(3)s

2 (x) 030m: (b) 0.094ms
(© 0059ms 2, 0089ms 17 0030, 0
Exercise 11.4
10874z
2 18m)
3 (a) 80m) ®)05my (© 32m)

Exercise 11.5: Examination questions

3 LisHz3INm '
4 ()25ONm  (0)80Hz
5 (a) L4 x 10°Nm () 0915
(9) (9 roling nd piching
6 (a) 05
7 (@ Gi) anpp(vxm direction tox
(6) () SONm™ (i) 0.79
(©) () 05657 x yim
(il 0.795: T dodstdepend on amplitude
() ) Straight line startin
but with half the slope:
ok (1) 225ms

(i) bouncing

at end of existing lie,

11500
128m
13 @S
oo usm 18Hz () 25ms
@ 0220e () Bms
14

oy 120 12 moom)
@ 1250 6pm)
(1)0201 01971

i) 1500 3.00pm)

o3 o 36 Pimare
1639m)

Chapter 12

Exercise 12.1

1250 10° Hz (®) 15km
268 10°Nm

336%10'ms”
a71ms

5 (@) 0.10kms ™ ()25 10 kgm
Exercise 12.2

1) +43em, —43em (1) 203 rad, 10n3rad

23jem
3 () 050He ©) 12m, 24m. for example

Exercise 12.3

1@ oing () adoue amplidesound

b) 20m, 170Hz; §
PRNEE R

Exercise 12.4
1 049mm

3@0Stam  M)0OmM () Lomm
Exercise 12,5

1@023m () Lims!

2 28cm, 11GHz

Exerdse 12.6
@) L8m, S9Hz:090m, 117Hz; 0.60m, 176 Hz
(6) 090m, 117117045 m, 234 He, 0.30m, 351z
2@ 16x 107 kem™ () 0.19kms
©) Lom @0sim
300K (0)300Hz  (©) DM



PHYSICS

Exercise 14.3
113
2%

4 @) () 140
S(n)Z\lellfml"

35m (34.6m)
6 Min 15410 35 s 17 07
6 Red 193 1075/ Blue - 196 x 105

Exercise 14.4: Examination questions
1 (h) Q@

w (-ws jSame as (b)) since

o

2wt

(©) 22 minutes

(b) 12.7 (s to water)
48)

5
6 @2 (®)24
@ Ciialange = e

. total internal

7

o 07
Gi)

8 (a) (i) 752
{b) (i) Critcal angle decteases so more lightlkely
0 stay i fibre:
()1 A =98 & B =80 (802)
2 Totally internallyrelected
© Snmmﬂb{n)xm s Longest 7.9 % 10°°s

Chapter 15
Exercise 15.1
1 +12m
2(@-30m  ()+15em
3@ sem ) -loem
S@illem  (B)102em (09
Exercise 15.2
—s03em
2 (a) ~0.50m (b) +3.0D
Exercise 15.3
1 l-l)l)ﬂlkm (b)+4.0D
2 (a) -0667D (6)0.23m to infinity
3 @20m
(b) (i) ~050D (ii) 20D
Exercise 15.4: Examination questions
1 (s) Comerging, 120cm  (b) Comerging, 10.7cm
2@2m () Bmm (O Vietal
3©) (i) Positon 400/3mm rom lens on same side
as objectm = (=)

13

. Posiion 129 mm (128 6mm) fom lens

2 24mms” 238mms™!)

Towards lens

a@ @Dt

(i) Diverging lens - image is 120mm from

as object

Converging lens - e 180 rom

km onopposse

gl ., upn,,m,

Cnmergedknx real, nverted, diminished
(€) f = S6mm: converging lens.
55) (5 Dinant oo praducs mageat ol
point

125D

i
® () A vital i fomned b the comerging
ens at distance (80 - 59) = 21 mm
right of ey
(i) 420mm from cyepiece and 10 the left of it
() Virtual: v is negative (~420mm)
ay from objective lens so s
10 reduce object duum u decreases so v
increases for the di

2m
1b)(u) 1O 2 )Immm 3.(4)300mm

H ke PR fi(ml
100 O 0m trom oy
) Yesens power mqlnmd s 59D which is
i range quote
(i) Hypermetropia



ANSWERS.

1M (@) (-
(b) Fig 15,6 (b) shows combined effect of eye.
ion (iverging) lens to
roduce a sharp image, on the retina, of a

distant
12(@) () Diverging unt 20w
-0 1o Fig 152
®) (i)

) |mpma4m power correction lens
‘and new far point is 3.3 m from his

Comment (3) 40KW is very large and s0 a
20C house temperature s unlkely o be
maintained;

(6) & (¢) The insuation layer mainly determines
the ate of energy transfe

5 (3) Thermal conductivity and thickness

®ac

Exercise 17.4: Exami
1 () 653°C
Stop heat losses

ion questions

1@ O 06D @) 12sen @ (@) Condution
13 (2) 300mm from cye (i) Free electons (and atomic virations)
) Moves from 200mm from e to 60mm from [t
ae 2. ) 090N () 0306 M
() Hest lowses therml capacy of dishwashers
cuaporaton of water
Chapter 16 390°C 657 C)
7 Dicusion- + notall cnergy vanserred 0
Exercise 16.1 thermal energ
1 (@ 27mm (b) (=) 93times * el e o 0
2 (a) 30mm (b) (~) 8.3 times surroundi
3 @ 26mm ©) () 70times » thermal cnergy not uniformy
Erercise 6.2 Fin o i ey ok, s it s
1@m @6 Q0010 ST
2@ msexn’ @ 5
()21 10°km (i) 43210 per 100;
exercise 16, (0 e et Tt im.ﬂcumﬁy s
1@ am. ) 300times i gas s allowed to
2 (a) 0.30 times. 1h) Ill7cm 5 (h) h) 0060kgs™ (|K) 20K (198K)
3 @ 918 mm
4@ 125mm & so0mm e r— s3m
52010 5 ) BCPE o enerywanter o
6215 x 10'km suroundings, cvaportion ct.
(i) 7AMI
066
Chapter 17 9401

Exercise 17.1
150K

271v

3 18000k K
amc
Exercise 17.2
137w

2 @Kk O)I6IK () 94mes”
Exercise 17.3

136w

2 02 War !

338w,

T &S © 1208 kW)

10 (3) 107k ) 970kkg !
1nc

1300 O 00K 000 10003 secpabe)
@ W G010 T accptble
o lnc meliing at 0
ve (05410034 cptb)
1800
15 (6) 0°C (when halfofice has melied) - assumes no
encrgy ransler from surroundings
(©) () AT = Xe™" 5™ (assumes extemal
temperature X in ‘C, m = mas of liquid
and ¢ = specifc heat capacity of liquid)
i) 19 hours
16 (@) 100Km

(b) 023kW

18 360w

309
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Exercise 20.2

1@)010A ®)20V
2 (@254 () 15A

3 04A, 50V 0084, 160V; 0324, 160V

Exercise 20.3
110
218x10"0m
320x10°K"

Exercise 20.4

1240
2 (1) 24kWh (b) 866
32601

Exercise 20.5

120v

2aon

3 @0 () 30A
o s 1sw

Exercise 20.6

Exercise 20.7
1 (@ 100mV. (b) 10mA
2 (a) 00400 shunt (b) 20K in series
(©) 10Qin series

Exercise 20.8

1@ 12V ®) 10V
2@40v )34V
Exercise 20.9

1 n = number of

v = drif velocity
ler nglh of wire

= 1 because both ¥ and X are copper

because conductors are in s

n
I
‘i 2 because area x v is same for Y and X

Sten (i) 09A
4200

8 6 I v

® 0 Ao 020 A1 100°C, 02980
)43

H Tcmpcmlln( increase releases more charge
fers. Resistance = 49542

8 ()

electrons per unit volume
i speed of ravel through

0"

s of atoms hinders cleciron

Incrmedpo pd e et o
s resistance to decrease:
undmclwﬂmshwxcrpnmnmnoﬁhuuwb pd.

E-sov

h

]
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i) 150
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12097
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Chapter 21

Exercise 21.1
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4oV gom
5 Zew, 'm ! to the right
Hriereriat o
Exercise 21.2
1) () 15 % 10'NC (or Vin™')
@ i19xi’c
kY, \thk =14 107), max

)
(9 712ud48) <!

o s

4@WF=g ®21%10"m

5 6 i) 18 ¢ 10N 10 e igh (o e fore b
huge charges imvohd)

uge
(i) Same size but 10 left

(i) 300 (Pownta 00NMY) iy 223

Chapter 22

Exercise 22.1
1@ouxirer
2805107
32451070 00
480mA

(017 107"
% 304 0010pF
Het

m«m 22

2 o 301C, 215V
.1

(©) 204C, L0,
3 (2) 080 m) Dy s
a67x107"

sA

6@Wavs'  m73VsT

Exercise 22.3

1@ H24x0F ()12x107C

(i) 30,0
®) () 09101
(i) Work done against attraction of — and +

(0) 60

plates
2@31x10°F
3 s

312

Time constant = 225, Stays on for 15s. R increase
lengthens time on.

4 () () BuF i) 100V
© 20x
161C  2)29V (3)d6uF
mzaur ACLANCEL
6 (b) (i) 5.

(© () 10Vatr=0, 10V x 4= ats = halpifer2

Chapter 23
Exercise 23.1
18w
it

3
e eaem
(© 60 10N
5 (@050 10Vt @ 0007

()64 10°Nm

Exercise 23.2
1.(0) 464N (i) 90A

() Small back EMF, large current, excessive

3 @70 1Fms
a4rx10 7 Hm

(b) Negative

Chapter 24

Exercise 24.1
1 (@) S0mV
2@ Bay
360%

() zero
L

©43mv

Exercise 24.2

1@ 16 10 W
© 16my

210%10°

(©)80 10 Wb

Exercise 24.3
154mA

2 (3) BV ®)9smy.

Exercise 24.4

1D
2 (2) 038 Wb

(b) () BAncos)
3B

4 Flux through closed window = 18 x 107 W
Induced 344V, When slding there is zer0
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Exercise 28.3
12188

2050

3 12 thousand years

Exercise 28.4

1405 10° Hz,No

2 @SOW | H)75W () 0025mm
3@ 141000 (a0

Exercise 28.5
1) 951075 ()32 10° (i) 9.6kBq
2 (2) () A s actvity at time 1,4 s inital activiy £

s ey cov
® @3
Py —
3 Hallc 335 Decayconstant - 0021 . e
of decy =6 10"
<105
ring angont method
sie ..f*‘,\m
51

Caleulted decay
1. More reliable to avoid

Chapter 29

Exercise 29.1

1146

3 403Mev

Exercise 29.2

1@ (0) T~ GPb + Je
zmszxm'“l (678 x 10°3 perkg
3 (a) () A=141,2

(ii) 3.24 x m"‘J
)12 10°W

& 7MeV per nucleon

Chapter 30

Exercise 30.1
1

2w

Exercise 30.2
18K,

Exercise 30.3

A=35AV
2 0010day

Exercise 30.4
7m
2 %m

Exercise 30.5
1@ 15my
2 35kms™!
340

Exercise 30.6

gem !
2L=30x10°0kg " h = 10W

(6) S0kHz
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f = WFE + KEqa, O KEqu, = if ~ WFE.

Gradient of graph is . = 6.8 x 10 I

approximately

5 Momentum = mass x velociy. Slope =

AU =205 slope is 15 x 10°N,
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